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 Introduction to dynamical systems 

 Introduction to flows on the line  

 Fixed points and linear stability 

 Solving equations with computer 

Outline 



 Systems that evolve in time. 

 Examples:  

• Pendulum clock 

• Neuron 

 Dynamical systems can be:  

• linear or nonlinear (harmonic 

oscillator – pendulum);  

• deterministic or stochastic;  

• low or high dimensional;  

• continuous time or discrete 

time. 

What is a Dynamical System? 

Time 

Voltage 

In this course: nonlinear systems (Nonlinear Dynamics) 
 



• After a transient the systems settles 

down to equilibrium (rest state or 

“fixed point”). 

 

• Keeps spiking in cycles (“limit 

cycle”). 

 

• More complicated: chaotic or 

complex evolution (“chaotic 

attractor”). 

 

Possible temporal 

evolution 



Introduction to dynamical 

systems 



 Mid-1600s: Ordinary differential equations (ODEs) 

 

 Isaac Newton: studied planetary orbits and 

solved analytically the “two-body” problem (earth 

around the sun). 

 

 Since then: a lot of effort for solving the “three-

body” problem (earth-sun-moon) – Impossible. 

 

In the beginning… 



 Henri Poincare (French mathematician).  

 Instead of asking “which are the exact positions of planets 

(trajectories)?”  

 he asked: “is the solar system stable for ever, or will planets 

eventually run away?” 

 

 He developed a geometrical approach to solve the problem. 

 

 Introduced the concept of “phase space”. 

 

 He also had an intuition of the possibility of chaos 

Late 1800s 



Deterministic system: the initial conditions fully 

determine the future state.  There is no randomness 

but the system can be unpredictable. 

 Poincare: “The evolution of a deterministic 

system can be aperiodic, unpredictable, and 

strongly depends on the initial conditions” 



 Computes allowed to experiment with equations. 

 Huge advance of the field of “Dynamical Systems”. 

 1960s: Eduard Lorentz (American mathematician 

and meteorologist at MIT): simple model of 

convection rolls in the atmosphere. 

 Chaotic motion. 

1950s: First simulations 



 Ilya Prigogine (Belgium, born in Moscow, Nobel 

Prize in Chemistry 1977) 

 Thermodynamic systems far from equilibrium. 

 Discovered that, in chemical systems, the 

interplay of (external) input of energy and 

dissipation can lead to “self-organized” patterns. 

Order within chaos and 

self-organization 



 Arthur Winfee (American theoretical biologist –

born in St. Petersburg): Large communities of 

biological oscillators show a tendency to self-

organize in time –collective synchronization. 

In the 1960s: biological 

nonlinear oscillators 

In the 1960’s he did experiments trying to understand the 

effects of perturbations in biological clocks (circadian rhythms). 

 

What is the effect of an external perturbation on 

subsequent oscillations?  



 Robert May (Australian, 1936): population biology 

 "Simple mathematical models with very  

     complicated dynamics“, Nature (1976). 

The 1970s 

 Difference equations (“iterated maps”), even though 

simple and deterministic, can exhibit different types of 

dynamical behaviors, from stable points, to a 

bifurcating hierarchy of stable cycles, to apparently 

random fluctuations.  
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The logistic map 
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“period-doubling” 

bifurcations to chaos 
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Parameter r 

x(i) 

r=2.8, Initial condition: x(1) = 0.2 

Transient relaxation → long-term stability 

Transient 

dynamics  

→ stationary 

oscillations 

(regular or 

irregular) 



 In 1975, Mitchell Feigenbaum (American 

mathematical physicist), using a small 

HP-65 calculator, discovered the scaling 

law of the bifurcation points 

Universal route to chaos 
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 Then, he showed that the same behavior, 

with the same mathematical constant, 

occurs within a wide class of functions, prior 

to the onset of chaos (universality). 

Very different systems (in chemistry, 

biology, physics, etc.) go to chaos in 

the same way, quantitatively. 

HP-65 calculator: the 

first magnetic card-

programmable 

handheld calculator 



 Benoit Mandelbrot (Polish-born, French 

and American mathematician  1924-

2010): “self-similarity” and fractal 

objects:  

 each part of the object is like the whole 

object but smaller. 

 

 Because of his access to IBM's 

computers, Mandelbrot was one of the 

first to use computer graphics to create 

and display fractal geometric images. 

The late 1970s 



 Are characterized by a “fractal” dimension that measures 

roughness. 

Fractal objects 

Video: http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180 

Broccoli 

D=2.66 

Human lung 

D=2.97 
Coastline of 

Ireland 

D=1.22 

http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180
http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180
http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180


 Optical chaos: first observed in laser systems. 

In the 80’s: can we observe 

chaos experimentally? 

 

Time 



 Ott, Grebogi and Yorke (1990) 

Unstable periodic orbits can be used for control: wisely 

chosen periodic kicks can maintain the system near the 

desired orbit. 

 

 Pyragas (1992) 

Control by using a continuous self-controlling feedback 

signal, whose intensity is practically zero when the system 

evolves close to the desired periodic orbit but increases 

when it drifts away. 

 

 

In the 90’: can we control 

chaotic dynamics? 

 



Experimental demonstration of 

control of optical chaos 



The 1990s: synchronization of two 

chaotic systems 
Pecora and Carroll, PRL 1990 

Unidirectionaly coupled Lorenz systems: the ‘x’ 

variable of the response system is replaced by the 

‘x’ variable of the drive system. 



Different types of synchronization 

 Complete (CS): x1(t) = x2(t)     (identical systems)  

 Phase (PS):  the phases of the oscillations synchronize, 

but the amplitudes are not. 

 Lag (LS):  x1(t+) = x2(t)  

 Generalized (GS):   x2(t) = f(x1(t))     (f depends on the 

strength of the coupling) 

 

A lot of work is being devoted to detect synchronization in 

real-world data. 



Experimental observation of 

synchronization in coupled lasers 
Fischer et al Phys. Rev. A 2000 



Synchronization of a large 

number of coupled oscillators   



Model of all-to-all coupled phase oscillators.  
 

 

 

K = coupling strength, i = stochastic term (noise)  

 

Describes the emergence of collective behavior 

How to quantify?       

With the order parameter: 
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Kuramoto model 

(Japanese physicist, 1975) 

r =0 incoherent state (oscillators scattered in the unit circle) 

r =1 all oscillators are in phase (i=j  i,j) 



Synchronization transition as the 

coupling strength increases 

Strogatz, Nature 2001 

Strogatz and 

others, late 90’  

 

 

 

Video: https://www.ted.com/talks/steven_strogatz_on_sync 

https://www.ted.com/talks/steven_strogatz_on_sync


 Interest moves from chaotic systems to complex systems 

(small vs. very large number of variables). 

 

 Networks (or graphs) of interconnected systems 

 

 Complexity science: dynamics of emergent properties 

‒ Epidemics 

‒ Rumor spreading 

‒ Transport networks 

‒ Financial crises 

‒ Brain diseases 

‒ Etc. 

End of 90’s - present 



Network science 

Strogatz 

Nature 2001, 

The challenge: to understand how the network structure 

and the dynamics (of individual units) determine the 

collective behavior. 



Summary 

 Dynamical systems allow to  

‒ understand low-dimensional systems,  

‒ uncover “order within chaos”,  

‒ uncover universal features 

‒ control chaotic behavior. 

 

 Complexity science: understanding emerging phenomena in 

large sets of interacting units. 

 

 Dynamical systems and complexity science are 

interdisciplinary research fields with many applications. 



 Introduction to dynamical systems 

 Introduction to flows on the line  

 Fixed points and linear stability 

 Solving equations with computer 
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 Continuous time: differential equations 
 

• Ordinary differential equations (ODEs). 

Example: damped oscillator 

 

 

• Partial differential equations (PDEs). 

Example: heat equation 

 

 Discrete time: difference equations or “iterated 

maps”. Example: the logistic map 

Types of dynamical systems 

x(i+1)=r x(i)[1-x(i)] 



ODEs can be written as first-

order differential equations  

 First example: harmonic oscillator 

 

 Second example: pendulum 

 

 



Trajectory in the phase space 

 Given the initial conditions, x1(0) and x2(0), 

we predict the evolution of the system by 

solving the equations: x1(t) and x2(t). 

 x1(t) and x2(t) are solutions of the equations. 

 The evolution of 

the system can be 

represented as a 

trajectory in the 

phase space. 

 two-dimensional 

(2D) dynamical 

system. Key argument (Poincare): find out 

how the trajectories look like, without 

solving the equations explicitly. 



 f(x) linear: in the function f, x appears to first order only 

(no x2, x1x2, sin(x) etc.). Then, the behavior can be 

understood from the sum of its parts. 

 f(x) nonlinear: superposition principle fails! 

Classification of dynamical systems 

described by ODEs (I/II)  

 Example of linear system: harmonic oscillator 

In the right-hand-side x1 

and x2 appear to first 

power (no products etc.) 

 

 Example of nonlinear system: pendulum 

 



Classification of dynamical systems 

described by ODEs (II/II)  

 =0: deterministic. 

 0: stochastic (real life) –simplest case: additive noise. 

 x: vector with few variables (n<4): low dimensional. 

 x: vector with many variables: high dimensional. 

 f  does not depend on time: autonomous system. 

 f  depends on time: non-autonomous system. 



 Three-dimensional system: to predict the evolution 

we need to know the present state (t, x, dx/dt). 

Example of non-autonomous 

system: a forced oscillator 

 Can also be written as first-order ODE 

 



 A one-dimensional autonomous dynamical 

system described by a first-order ordinary 

differential equation 

 

 x  

 f does not depend on time 

So…what is a “flow on the line”? 



  

 

 

 

 

 

 

 

 

 

 

        

  

 

 

 

 

 

 

 

 

 

 

        

Harmonic 

oscillator 

Pendulum 

• Heat 

equation, 

• Maxwell 

equations 

• Schrodinger 

equation 

RC circuit 

Logistic 

population

grow 

• Navier-

Stokes 

(turbulence) 

N=1 N=2 N=3 N>>1 N= (PDEs 

         DDEs) 

Linear 

Nonlinear 
• Forced 

oscillator 

• Lorentz 

model 

• Kuramoto 

phase 

oscillators 

Summarizing 

Number of variables 

“flow on the line” 
PDEs=partial differential eqs. 

DDEs=delay differential eqs. 
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Example 

 Starting from x0=/4, what is the long-term behavior (what 

happens when t?) 

 

 And for any arbitrary condition xo? 

 

 We look at the “phase portrait”: geometrically, picture of all 

possible trajectories (without solving the ODE analytically). 

 

 Imagine: x is the position of an imaginary particle restricted to 

move in the line, and dx/dt is its velocity. 

 

Analytical Solution: 



Imaginary particle moving in the 

horizontal axis 

x0 =/4 

x0 arbitrary 

Flow to the right when 

Flow to the left when 

“Fixed points” 

Two types of FPs: stable & unstable 



Fixed points 

Fixed points = equilibrium solutions 

 

 Stable (attractor or sink): nearby 

trajectories are attracted 

     and - 

 

 Unstable: nearby trajectories are 

repelled 

   0 and  2 

 



 Find the fixed points and classify their stability 

Example 1 



Example 2 



 N(t): size of the population of the species at time t 

Example 3: population model for 

single species (e.g., bacteria) 

 Simplest model (Thomas Malthus 1798): no migration, 

births and deaths are proportional to the size of the 

population 

Exponential grow! 



More realistic model: 

logistic equation 

 If N>K the population decreases 

 If N<K the population increases 

 To account for limited food (Verhulst 1838): 

 The carrying capacity of a biological species in an 

environment is the maximum population size of the species 

that the environment can sustain indefinitely, given the food, 

habitat, water, etc. 

 K = “carrying capacity” 



How does a population approach 

the carrying capacity? 

 Good model only for simple 

organisms that live in constant 

environments. 

 Exponential or sigmoid approach. 



And the human population? 

Source: wikipedia 

Hyperbolic grow ! 

 Technological advance 

 → increase in the carrying 

capacity of land for people  

→ demographic growth  

→ more people  

→ more potential inventors  

→ acceleration of 

technological advance 

→ accelerating growth of 

the carrying capacity… 



the perturbation  grows exponentially  

Linearization close to a 

fixed point 

the perturbation  decays exponentially  

Second-order terms can not be neglected and a 

nonlinear stability analysis is needed.  

 Bifurcation (more latter) 

 Characteristic time-scale 

The slope f’(x*) at the fixed point determines the stability 

 = tiny perturbation 

Taylor expansion 



Existence and uniqueness 

 Problem: f ’(0) infinite 

 When the solution of dx/dt = f(x) with x(0) = x0 exists and is 

unique? 

 Short answer: if f(x) is “well behaved”, then a solution exists 

and is unique.  

  “well behaved”? 

 f(x) and f ’(x) are both continuous on an interval of x-values 

and that x0 is a point in the interval. 

 Details: see Strogartz section 2.3. 



 Linear stability of the fixed points of  

Example 1 

 Stable:  and - 

 

 Unstable: 0,  2 

 



 Logistic equation 

Example 2 

 The two fixed points have 

the same characteristic 

time-scale: 

 



Good agreement with controlled 

population experiments 



Lack of oscillations 

 General observation: only 

sigmoidal or exponential 

behavior, the approach is 

monotonic, no oscillations 

Strong damping 

(over damped limit) 

Analogy: 

 To observe oscillations we need 

to keep the second derivative 
(weak damping). 



Stability of the fixed point x* 

when f ’(x*)=0? 

In all these systems: 

When f’(x*) = 0 

nothing can be 

concluded 

from the 

linearization 

but these plots 

allow to see 

what goes on. 



Potentials 

V(t) decreases along the trajectory. 

 Example: 

Two fixed points: x=1 and x=-1 

(Bistability).  



 Flows on the line = first-order ODE: dx/dt = f(x) 

 

 Fixed point solutions: f(x*) =0 

• stable if f´(x*) <0  

• unstable if f´(x*) >0 

• neutral (bifurcation point) if f´(x*) = 0 

 

 There are no periodic solutions; the approach to a fixed 

point is monotonic (sigmoidal or exponential). 

Summary 



 Introduction to dynamical systems 

 Introduction to flows on the line  

 Fixed points and linear stability 

 Solving equations with computer 

 

Outline 



 Euler method 

Numerical integration 

 Euler second order 



 Fourth order (Runge-Kutta 1905) 

 Problem if t is too small: round-off errors 

(computers have finite accuracy). 





Example 1 
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%vector_field.m 

n=15; 

tpts = linspace(0,10,n);  

ypts = linspace(0,2,n); 

[t,y] = meshgrid(tpts,ypts); 

pt = ones(size(y)); 

py =  y.*(1-y); 

quiver(t,y,pt,py,1); 

xlim([0 10]), ylim([0 2]) 

• quiver(x,y,u,v,scale): plots 

arrows with components (u,v) 

at the location (x,y).  

 

• The length of the arrows is 

scale times the norm of the 

(u,v) vector. 
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To plot the blue arrows: 



Numerical solution 
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tspan = [0 10];  

yzero = 0.1;  

[t, y] =ode45(@myf,tspan,yzero); 

plot(t,y,'r*--'); xlabel t; ylabel y(t) 

1.0)0( y

function yprime = myf(t,y) 

yprime = y.*(1-y); 

To plot the solution (in red): 

The solution is always tangent to the arrows 

 

Remember: HOLD to plot together the blue 

arrows & the trajectory. 



Example 2 
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n=15; 

tpts = linspace(0,3,n);  

ypts = linspace(-1.5,1.5,n); 

[t,y] = meshgrid(tpts,ypts); 

pt = ones(size(y)); 

py = -y-5*exp(-t).*sin(5*t); 

quiver(t,y,pt,py,1); 

xlim ([0 3.2]), ylim([-1.5 1.5]) 

function yprime = myf(t,y) 

yprime = -y -5*exp(-t)*sin(5*t); 

tspan = [0 3];  

yzero = -0.5;  

[t, y] = ode45(@myf,tspan,yzero);  

plot(t,y,'kv--'); xlabel t; ylabel y(t) 
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General form of a call to Ode45 



Class and homework 
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Class and homework 



 Steven H. Strogatz: Nonlinear dynamics 

and chaos, with applications to physics, 

biology, chemistry and engineering. 

 First or second ed., Chapters 1 and 2 

 

 

 D. J. Higham and N. J. Higham, Matlab 

Guide Second Edition (SIAM 2005) 
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