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= |ntroduction to dynamical systems
= |ntroduction to flows on the line

= Fixed points and linear stability

= Solving equations with computer
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= Systems that evolve in time. " @ perod 7
I_ a 0:‘ -
) |

= Examples:
* Pendulum clock
* Neuron
= Dynamical systems can be:

* linear or nonlinear (harmonic spike
oscillator — pendulum); Voltage

« deterministic or stochastic; PSP
* low or high dimensional; L t
B

e continuous time or discrete stimuli
time. Time

In this course: nonlinear systems (Nonlinear Dynamics)
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 After a transient the systems settles .
down to equilibrium (rest state or 'y
“fixed point”). siml

L

» Keeps spiking in cycles (“limit
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* More complicated: chaotic or
complex evolution (“chaotic
attractor”).
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Introduction to dynamical
systems
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= Mid-1600s: Ordinary differential equations (ODES)

= |saac Newton: studied planetary orbits and
solved analytically the “two-body” problem (earth
around the sun).

= Since then: a lot of effort for solving the “three-
body” problem (earth-sun-moon) — Impossible.
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Henri Poincare (French mathematician).
Instead of asking “which are the exact positions of planets

(trajectories)?”

he asked: “is the solar system stable for ever, or will planets
eventually run away?”

He developed a geometrical approach to solve the problem.

Introduced the concept of “phase space”.

He also had an intuition of the possibility of chaos
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Poincare: “The evolution of a deterministic
system can be aperiodic, unpredictable, and
strongly depends on the initial conditions”

prediction
fails out here

t=0

2 initial conditions,
almost indistinguishable

I=1 horizon

Deterministic system: the initial conditions fully
determine the future state. There is no randomness
but the system can be unpredictable.
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= Computes allowed to experiment with equations.
®= Huge advance of the field of “Dynamical Systems”.

= 1960s: Eduard Lorentz (American mathematician
and meteorologist at MIT): simple model of
convection rolls in the atmosphere.

" Chaotic motion.
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= |lya Prigogine (Belgium, born in Moscow, Nobel
Prize in Chemistry 1977)

= Thermodynamic systems far from equilibrium.

= Discovered that, in chemical systems, the
Interplay of (external) input of energy and
dissipation can lead to “self-organized” patterns.
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Arthur Winfee (American theoretical biologist —
born in St. Petersburg): Large communities of
biological oscillators show a tendency to self-
organize in time —collective synchronization.

In the 1960’s he did experiments trying to understand the
effects of perturbations in biological clocks (circadian rhythms).

What is the effect of an external perturbation on
subsequent oscillations?
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= Robert May (Australian, 1936). population biology
= "Simple mathematical models with very
complicated dynamics®, Nature (1976).

X, = T(X) Example: T(X)=r x(1-Xx)

= Difference equations (“iterated maps”), even though
simple and deterministic, can exhibit different types of
dynamical behaviors, from stable points, to a
bifurcating hierarchy of stable cycles, to apparently
random fluctuations.
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= |n 1975, Mitchell Feigenbaum (American
mathematical physicist), using a small
HP-65 calculator, discovered the scaling
law of the bifurcation points

lim. 172 _ 46600

n—oo
rn o rn—l

®" Then, he showed that the same behavior,
with the same mathematical constant,
occurs within a wide class of functions, prior
to the onset of chaos (universality).

Very different systems (in chemistry, o o coiculator: the
biology, physics, etc.) go to chaos in first magnetic card-

the same way, quantitatively. programmable
handheld calculator
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= Benoit Mandelbrot (Polish-born, French
and American mathematician 1924-
2010): “self-similarity” and fractal
objects:
each part of the object is like the whole
object but smaller.

= Because of his access to IBM's
computers, Mandelbrot was one of the
first to use computer graphics to create
and display fractal geometric images.
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= Are characterized by a “fractal” dimension that measures
roughness.

Broccoli Human lung Coastline of
D=2.66 D=2.97 Ireland
D=1.22

Video: http://www.ted.com/talks/benoit mandelbrot fractals the art of roughness#t-149180
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= Optical chaos: first observed in laser systems.

Intensaty

-

Time
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= Ott, Grebogi and Yorke (1990)

Unstable periodic orbits can be used for control: wisely
chosen periodic kicks can maintain the system near the

desired orbit.

= Pyragas (1992)
Control by using a continuous self-controlling feedback

signal, whose intensity Is practically zero when the system
evolves close to the desired periodic orbit but increases

when it drifts away.
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Experimental demonstration of
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control of optical chaos

Control
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Pecora and Carroll, PRL 1990

Unidirectionaly coupled Lorenz systems: the ‘X’
variable of the response system is replaced by the
‘X’ variable of the drive system.

-l
Y1 4"}’2 [ — yz—yl‘—bv[]:, ZE—ZI‘—>U
2y — P 2

Drive Response
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dv, / dt = F(x,)

dv,/dt = F(x,)+aE(x, —x, )

= Complete (CS): x4(t) =x,(t) (identical systems)
= Phase (PS): the phases of the oscillations synchronize,
but the amplitudes are not.

" Lag (LS): x,(t+7) = X,(t)
= Generalized (GS): x,(t) =f(x,(t)) (fdepends on the
strength of the coupling)

A lot of work is being devoted to detect synchronization in
real-world data.
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Figure 1| Fireflies, fireflies burning bright. In the forests of the night,
certain species of firefly flash in perfect synchrony — here Pteroptyx
malaccae in a mangrove apple tree in Malaysia. Kaka ef al.” and
Mancoff et al.” show that the same principle can be applied to
oscillators at the nanoscale.
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Model of all-to-all coupled phase oscillators.

dé. K, . .
_I: ._I__ Sln 9-_0- _I_ " I:1IIIN
ST ,Ezl (0, -6)+¢

K = coupling strength, & = stochastic term (noise)

Describes the emergence of collective behavior
How to quantify? N

. iy _ 1 10;
With the order parameter: € = Nze

=L

r =0 incoherent state (oscillators scattered in the unit circle)
r =1 all oscillators are in phase (=6, V I,))
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Strogatz and
others, late 90’

Strogatz, Nature 2001  Video: https://www.ted.com/talks/steven_strogatz_on_sync
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" |nterest moves from chaotic systems to complex systems
(small vs. very large number of variables).

= Networks (or graphs) of interconnected systems

= Complexity science: dynamics of emergent properties
— Epidemics
— Rumor spreading
— Transport networks
— Financial crises
— Brain diseases
— Etc.
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The challenge: to understand how the network structure
and the dynamics (of individual units) determine the
collective behavior.

Strogatz
Nature 2001,
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Dynamical systems allow to

— understand low-dimensional systems,
— uncover “order within chaos”,

— uncover universal features

— control chaotic behavior.

Complexity science: understanding emerging phenomena
In large sets of interacting units.

Dynamical systems and complexity science are
Interdisciplinary research fields with many applications.
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= |ntroduction to dynamical systems
" |Introduction to flows on the line
= Solving equations with computer
= Fixed points and linear stability
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= Continuous time: differential equations

« Ordinary differential equations (ODES).
Example: damped oscillator d X

df dt

- Partial differential equations (PDES).

Example: heat equation du _du

H ox’

= Discrete time: difference equations or “iterated
maps”. Example: the logistic map

x(i+1)=r x()[1-x(i)]
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ODEs can be written as first-

order differential equations
d’x dx X, = filx), o x,)
m—4+b—+kx=0 = x= f(x
dt* dt _ /()
't'.rr = .f:!':"rl" e "rr:]
. O . : : d’x dx
First example: harmonic oscillator m——+p-—=+kx=0
dr” dr
= : b k
=y = -2 Kk —_ b — X Xy = = Xy 7w X
x2 — X = m X m X = " x2 m xl J
= Second example: pendulum
X+4+sinx =0 = | hTh
X, =—=4sinx,
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= Given the initial conditions, x,(0) and x,(0),
we predict the evolution of the system by
x| solving the equations: x,(t) and x(t).

X=Xy

y = — by

mn

= X,(t) and x,(t) are solutions of the equations.

N

" The evolution of

the system can be

represented as a /‘N”
trajectory in the TN <
phase space. «x/.«»,»,_m»

= two-dimensional

(2D) dynamical | |

system. Key argument (Poincare): find out
how the trajectories look like, without

solving the equations explicitly.
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= f(x) + £(1)

= f(x) linear: in the function f, x appears to first order only
(no X2, X;X,, Sin(x) etc.). Then, the behavior can be

understood from the sum of its parts.

= f(x) nonlinear: superposition principle fails!

= Example of linear system: harmonic oscillator

a:f X
a’r dt

X = Xy

x2 n

xz-—

m

x

In the right-hand-side x;
and x, appear to first
power (no products etc.)

= Example of nonlinear system: pendulum

X+4sinx =0

—

X, = X,

X, =—=4sinx,
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¥ = f(x)+&(0)

= £=0: deterministic.
" &#0: stochastic (real life) —simplest case: additive noise.

= X: vector with few variables (n<4): low dimensional.
= X:vector with many variables: high dimensional.

= f does not depend on time: autonomous system.
= f depends on time: non-autonomous system.
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system: a forced oscillator

mx + bx +kx = Fcost

= Can also be written as first-order ODE

x, =x and x, = x X, = X,

= ']:f.* - Llj(_'l';ll — bx, + FL‘DE‘II)

i, =1

" Three-dimensional system: to predict the evolution
we need to know the present state (t, x, dx/dt).
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= A one-dimensional autonomous dynamical
system described by a first-order ordinary
differential equation

x = f(x)

" XeR
= fdoes not depend on time
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Linear

Nonlinear

Number of variables

N=co (PDEs
= = = N>>1
N=1 N=2 N=3 DDEs)
_ « Heat
RC circuit Harmonic dx(1) equation,
oscillator 3 = Ax(t)+ Bu(t) «  Maxwell
equations
x(1) = (xi(t), ..., xn(t)) | « Schrodinger
equation
o * Navier-
Logistic Pendulum | « Forced |[* Kuramoto Stokes
population oscillator phase (turbulence)
grow e Lorentz oscillators
model

t “flow on the line”

PDEs=partial differential egs.
DDEs=delay differential egs.
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= |ntroduction to dynamical systems
= |ntroduction to flows on the line

= Solving equations with computer
= Fixed points and linear stability
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= Euler method

x(t, + Ar) = x, = x, + f(x,)At

Eul
Iﬂ"']. - "'r“- + f(-'r” }ﬂf o exact
Iu = fl] + H-ﬂ-f I{Ill)
Xy
" Euler second order
"Em-l = 'Ir: + f{xﬂ)ﬁ!l -IFI:} -:‘1 :?2

X = x, 3 flx,)+ f(x,.)]Af



UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Campus d’Excel-lencia Internacional

= Fourth order (Runge-Kutta 1905)
k, = f(x,)At
k, = f(x, ++k)At
ky = f(x, +1k,) At
k, = f(x, +k;)At.

X . =x, ++(k +2k, +2k, +k,)

® Problem if At is too small: round-off errors
(computers have finite accuracy).
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Table 12.1. MATLAB’s ODE solvers.

Solver  Problem type Type of algorithm

ode4b Nonstift Explicit Runge-Kutta pair. orders 4 and 5

ode23 Nonstift Explicit Runge-Kutta pair, orders 2 and 3

odel13 Nonstitt Explicit linear multistep, orders 1 to 13

odelbs Stiff Implicit linear multistep, orders 1 to 5

ode23s  Stifl Modified Rosenbrock pair (one-step), orders 2 and 3
ode23t Mildly stift Trapezoidal rule (implicit), orders 2 and 3

ode23tb  Stift [mplicit Runge-Kutta type algorithm, orders 2 and 3
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« quiver(x,y,u,v,scale): plots y=y(ld-y)
arrows with components (u,v)

) 2 : : : :
at the location (x,y). " |
] 1.6 g '
« The length of the arrows is SRR R 1 RE
scale times the norm of the 1280 RN NN NN N NN NN N
(u,V) VeCtO I. 6; 1= — %VVE R R e
o g iﬁ,&w*/ A A A
0'87///@*7////////'
To plot the blue arrows: 0-67; ? j%;ﬁj j j j j j ? ? ? j
%vector_field.m e /%ﬁ./ YA A R AV AV A A A
020, %5 5 5 5 5 5 o 5 o o T
n=15; ol r r . r
00 2 4 6 8 10

tpts = linspace(0,10,n);
ypts = linspace(0,2,n);
[t,y] = meshgrid(tpts,ypts);
pt = ones(size(y));

py = y.*(1-y);
quiver(t,y,pt,py,1);

xlim([0 10]), ylim([0 2])

—
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p=y(-y) YO=01

To plot the solution (in red): | §§ § § ,
tspan = [0 10]; ;Z§\§§§\\§§§§\\§:
yzero = 0.1; S 1 5 SSveSververmseesm——
[t, y] =oded5(@myf,tspan,yzero); o, . . jﬁgw’*j ST
plot(t,y,'r*--"); xlabel t; ylabel y(t) 08y A AET A A A g g g g g g

wal TSI

A A A B A B A A A A

. . loﬁkféwﬁr)))r))i))i)/
function yprime = myf(t,y) 0 2 4 6 8 10

t

yprime = y.*(1-y);

The solution is always tangent to the arrows

Remember: HOLD to plot together the blue
arrows & the trajectory.
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p=—y—5¢"sin5t  y(0)=-05

1.5

x \jL /L~ NN N Y N N
n=15; T NN
tpts = linspace(0,3,n); o § NN
ypts = linspace(-1.5,1.5,n); o5k § VLT T e sy
[t,y] = meshgrid(tpts,ypts): i s § L
pt = ones(size(y)); g o- A SN
py = -y-5*exp(-t).*sin(5*1); . § 5 T o
quiver(t,y,pt,py,1); § R/ S A
xlim ([0 3.2]), ylim([-1.5 1.5)]) NN e

///:,//////
15 r//r//v e /S 77 v
tspan — [O 3]’ 0 0.5 1 1.5t 2 2.5 3

yzero = -0.5;
[t, y] = oded5(@myf,tspan,yzero);
plot(t,y,'kv--"); xlabel t; ylabel y(t)

function yprime = myf(t,y)
yprime =-y -5*eXp('t)*Sin(5*t);
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[t,y] = ode4b5(@fun,tspan,yzero,options,pl,p2,...);

The optional trailing arguments pl, p2, ... represent problem parameters that, if
provided, are passed on to the function fun. The optional argument options is a
structure that controls many features of the solver and can be set via the odeset
function. In our next example we create a structure options by the assignment

options = odeset(’AbsTol’,le-7,’RelTol’,1le-4);

Passing this structure as an input argument to ode4b causes the absolute and relative
error tolerances to be set to 1077 and 107 %, respectively. (The default values are
107% and 1077; see help odeset for the precise meaning of the tolerances.) These
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¥ 2.8.3 (Calibrating the Euler method) The goal of this problem is to test the

Euler method on the initial value problem x = —x, x(0)=1.
a) Solve the problem analytically. What is the exact value of x(1)?

b) Using the Euler method with step size Ar =1, estimate x(1) numerically—call
the result x(1). Then repeat, using Ar=10",forn=1, 2, 3, 4. |

¢) Plot the error E = |.i§(1) — x(l)| as a function of Az . Then plot In E vs. Inr. Ex-
plain the results. 0

10 ¢
// v
-5
10 ¢ b

Error

10

In t



- = = === === ===
@ UNIVERSITAT POLITECNICA Class and homework

BARCELONATECH

PRSI | S VPN [ 5 W gy (U SRR pRysp |

“critical slowing down” is a signature of a second-order phase transition. At the
transition, the system relaxes to equilibrium much more slowly than usual. Here’s
a mathematical version of the effect:

a) Obtain the analytical solution to x = —x* for an arbitrary initial condition.
Show that x(t) — 0 as t — ¢, but that the decay is not exponential. (You
should find that the decay is a much slower algebraic function of ¢ .)

b) To get some intuition about the slowness of the decay, make a numerically ac-
curate plot of the solution for the initial condition x, =10, for 0 < <10. Then,
on the same graph, plot the solution to x = —=x for the same initial condition.

[
o

x(0)

K(1)= J1+202(0)

B O P N W A O O N © ©
/




UNIVERSITAT POLITECNICA O tl 1
DE CATALUNYA Utll n e
BARCELONATECH

Campus d’Excel-lencia Internacional

= |ntroduction to dynamical systems
= |ntroduction to flows on the line

= Solving equations with computer
= Fixed points and linear stability
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X =S8Inx
ESC I,-r -+' ':G[ .-rl"l
CSCX+cCotx

Analytical Solution: 7=In

Starting from x,=x/4, what is the long-term behavior (what
happens when t—w?)

And for any arbitrary condition x,?

We look at the “phase portrait”. geometrically, picture of all
possible trajectories (without solving the ODE analytically).

Imagine: x is the position of an imaginary particle restricted to
move In the line, and dx/dt is its velocity.
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Flow to the right when x > O

X =SIA owto the left when X <0 1 Xo=n/4

* /——"
) | AN
b4 2n
\_/ X, arbitrary

x =0 “Fixed points” k
e

Two types of FPs: stable & unstable ' /

S =

-2n

N
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i=fx)  fxH=0

x =x* imtially, then x(z) = x* for all time : .
X =8Sm4x

-

Fixed points = equilibrium solutions 2

= Stable (attractor or sink): nearby y /’—-
trajectories are attracted x /

m and -nt 0
= Unstable: nearby trajectories are , &

repelled f
O and £ 2=

-2x
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* 2
x=x"-1

* Find the fixed points and classify their stability

X

/f(x)=le
- - / - x

x* = —] 1s stable, and x* =1 1s unstable
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single species (e.g., bacteria)

= N(t): size of the population of the species at time t
dN , . :
o = births — deaths 4+ migration
= Simplest model (Thomas Malthus 1798): no migration,
births and deaths are proportional to the size of the
population AN

——=bN-dN = N@= Noe'#—N

Exponential grow!
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= To account for limited food (Verhulst 1838): n - rNr I - E]
. K

= |f N>K the population decreases
= |f N<K the population increases

- N

= K = “carrying capacity”

= The carrying capacity of a biological species in an
environment is the maximum population size of the species

that the environment can sustain indefinitely, given the food,
habitat, water, etc.



- - s s sy
@ o O - e How does a population approach

BARCELONATECH

Campus d’Excel-léncia Internacional t h e C ar ry i n g C ap a.C i ty ?

. N
N-—rN[l——]
K
T - N
K/2 K

Fa "

= Exponential or sigmoid approach

K/2 4

organisms that live in constant
: environments.

// = Good model only for simple
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Hyperbolic grow !
Technological advance

— Increase in the carrying
capacity of land for people
— demographic growth

— more people

— more potential inventors
— acceleration of
technological advance

— accelerating growth of
the carrying capacity...

Source: wikipedia
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x = f(x) f(x¥)y=0 nW=x@)-x* n = tiny perturbation
1= 40— xh) = i
n=x=f(x)=f(x*+mn)
Taylor expansion  f(x*+ )= f(x*)+nf (x*)+0(n")
fen=0 = nf"(x*)+00)

The slope f(x*) at the fixed point determines the stability
f(x*)>0 the perturbation n; grows exponentially

f'(x¥*y<0  the perturbation n decays exponentially

f(x¥*)=0  Second-order terms can not be neglected and a
nonlinear stability analysis Is needed.

Bifurcation (more latter)
f(x*)|  Characteristic time-scale

1/
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the solution to x = x'"* starting from x, =0 is not unique.

= Problem: f’(0) infinite MK’I

= When the solution of dx/dt = f(x) with x(0) = x, exists and is
unique?

= Short answer: if f(x) is “well behaved”, then a solution exists
and Is unique.

= ‘“well behaved™?

= f(x) and f ’(x) are both continuous on an interval of x-values
and that x, Is a point in the interval.

= Detalls: see Strogartz section 2.3.
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= Linear stability of the fixed points of X =SIn X

x*=km
I, K even
-1, k& odd.

/A

\/ " - = Unstable: 0, + 2rn

F/(x*) = coskm ={

X

= Stable: ®r and -«
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= Logistic equation N = rN[l _E)
K
N¥=0 and N¥=K

N* =0 1s unstable

fO)=rand f(K)==r = _

N#*= K 1s stable
The two fixed points have
the same characteristic
time-scale:

L (N =1/r

\\f
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& 200
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Days

The population growth of the protozoan Paramecium in test tubes is
a typical example (Figure 1.5). Under the conditions of the experiment,
the population stopped growing when there were about 552 individuals
per 0.5 ml. The time points show some scatter, which is caused both by
the difficulty in accurately measuring population size (only a subsample of
the population is counted) and by environmental variations over time and
between replicate test tubes. A linear regression of the data N'/N versus

N gives r = 0.99 and K = 552,



@ UNIVERSITAT POLITECNICA Lack of oscillations

BARCELONATECH

Campus d’Excel-lencia Internacional

x = f(x) .
General observation: only L
sigmoidal or exponential k
behavior, the approach is m/’/—'
monotonic, no oscillations ,
Analogy:

 honey mi + bx = F(x)

— . — . .

Fo Strong damp_ln_g bx >> m¥
§m (over damped limit) bx = F(x)

m . .

- / To observe oscillations we need

to keep the second derivative
(weak damping).
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Stability of the fixed point x*
when f ’(x*)=07?

jonal

(a) ¥ =—x"

In all these systems: x*=0 with f/(x*)=0

X

AL

i)

(
X
c)

a)

(b) x =x

X

-

(c) x=x’

(®)

e

X

(d)

(d) x=0

When f'(x*) =0
nothing can be
concluded
from the
linearization
but these plots
allow to see
what goes on.
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x=f(x) f(x)=_..‘.il/. i‘i_’.iz_d_v
dx dt dx
dV . dV dx dV dV : V)
dt dx dt g _(Ex") =0

V(t) decreases along the trajectory.

= Example: X=x-—x"

V=—3x*+ix*+C

Two fixed points: x=1 and x=-1
(Bistability).
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® Flows on the line = first-order ODE: dx/dt = f(x)

= Fixed point solutions: f(x*) =0
* stable if f'(x*) <0
 unstable if f'(x*) >0
 neutral (bifurcation point) if f'(x*) =0

= There are no periodic solutions; the approach to a fixed
point is monotonic (sigmoidal or exponential).
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