Nonlinear systems, chaos and control in Engineering

Bifurcations: saddle-node, transcritical and pitchfork

Cristina Masoller Cristina.masoller@upc.edu http://www.fisica.edu.uy/~cris/

Deadline for presenting the reports (two weeks after the course finishes):

Friday April 20, 2018

- Reports received up to 48 hours after deadline will be penalized by 50% and will not be accepted after that.
- Advise: Finalize a first draft of each report as soon as each module finishes.
- Reports should be sent by email to C.M. or A.P. as a single pdf file, figures should be numbered and the codes for generating each fig. should be included (as plain text) in an appendix.

Reminder Summary Part 1

Campus d'Excel·lència Internacional

Flows on the line = first-order ordinary differential equations.

$$dx/dt = f(x)$$

- Fixed point solutions: $f(x^*) = 0$
 - stable if f'(x*) <0
 - unstable if $f'(x^*) > 0$
 - neutral (bifurcation point) if $f'(x^*) = 0$
- There are no periodic solutions; the approach to fixed point solutions is monotonic (sigmoidal or exponential).

- Introduction to bifurcations
- Saddle-node, transcritical and pitchfork bifurcations
- Examples
- Imperfect bifurcations & catastrophes

What is a bifurcation?

- A qualitative change (in the structure of the phase space) when a control parameter is varied:
 - Fixed points can be created or destroyed
 - The stability of a fixed point can change
- There are many examples in physical systems, biological systems, etc.

Control parameter increases in time

Bifurcation and potential

Bifurcations are not equivalent to qualitative change of behavior

Campus d'Excel·lència Internacional

Bifurcation but no change of behavior

Change of behavior but no bifurcation

- Introduction to bifurcations
- Saddle-node, transcritical and pitchfork bifurcations
- Examples
- Imperfect bifurcations & catastrophes

Saddle-node bifurcation

Campus d'Excel·lència Internacional

Basic mechanism for the creation or the destruction of fixed points

$$\dot{x} = f(x) = r + x^2 \qquad x^* = \pm \sqrt{-r}$$

$$x^* = \pm \sqrt{-r}$$

$$f'(-\sqrt{-r}) = -2\sqrt{-r}$$
$$f'(\sqrt{-r}) = 2\sqrt{-r}$$

Stable if r<0 unstable

At the bifurcation point $r^*=0$: $f'(x^*)=0$

$$\dot{x} = r - x^2$$

 Calculate the fixed points and their stability as a function of the control parameter r

 \boldsymbol{x}

$$x^* = \pm \sqrt{r}$$

$$r = 0$$

- Are representative of all saddle-node bifurcations.
- Close to the saddle-node bifurcation the dynamics can be approximated by

$$\dot{x} = r - x^2$$
 or $\dot{x} = r + x^2$

Example:
$$\dot{x} = r - x - e^{-x}$$

$$= r - x - \left[1 - x + \frac{x^2}{2!} + \cdots\right]$$

$$= (r-1) - \frac{x^2}{2} + \cdots$$

Near a saddle-node bifurcation

Bifurcation diagram

Campus d'Excel·lència Internacional

$$\dot{x} = r + x^2$$

Two fixed points \rightarrow one fixed point \rightarrow 0 fixed point

A pair of fixed points appear (or disappear) out of the "clear blue sky" ("blue sky" bifurcation, Abraham and Shaw 1988).

Transcritical bifurcation

Campus d'Excel·lència Internacional

$$\dot{x} = rx - x^2$$

$$x^* = 0$$

are the fixed points for all r

Transcritical bifurcation: general mechanism for changing the stability of fixed points.

Bifurcation diagram

Campus d'Excel·lència Internacional

$$\dot{x} = rx - x^2$$

fixed points $x^* = 0$ and $x^* = r$

$$f'(x) = r - 2x$$

$$f'(0) = r$$

$$f'(r) = -r$$

- Exchange of stability at r = 0.
- **Exercise**: $\dot{x} = r \ln x + x 1$

show that a transcritical bifurcation occurs near x=1 (hint: consider u = x-1 small)

Pitchfork bifurcation

Campus d'Excel·lència Internacional

$$\dot{x} = rx - x^3$$

Symmetry $x \rightarrow -x$

One fixed point \rightarrow 3 fixed points

Bifurcation diagram

Campus d'Excel·lència Internacional

■ The governing equation is symmetric: $x \rightarrow -x$ but for r > 0: symmetry broken solutions.

$$\dot{x} = rx - x^3$$

$$\dot{x} = f(x)$$

$$f(x) = -dV/dx$$

$$\dot{x} = rx - x^3$$
 $\dot{x} = f(x)$ $f(x) = -dV/dx$ $V(x) = -\frac{1}{2}rx^2 + \frac{1}{4}x^4$

$$r = 0$$

Pitchfork bifurcations

Campus d'Excel·lència Internacional

Supercritical: x^3 is stabilizing

$$\dot{x} = rx - x^3$$

Subcritical: x^3 is destabilizing

$$\dot{x} = rx + x^3$$

Exercise: find the fixed points and compute their stability

$$\dot{x} = rx + x^3 - x^5$$

Subcritical bifurcation: Hysteresis

Campus d'Excel·lència Internacional

Critical or dangerous transition! A lot of effort in trying to find "early warning signals" (more latter)

Hysteresis: sudden changes in visual perception

Campus d'Excel·lència Internacional

Fischer (1967): experiment with 57 students.

"When do you notice an abrupt change in perception?"

Bifurcation condition: change in the stability of a fixed point

$$f'(x^*) = 0$$

- In first-order ODEs: three possible bifurcations
 - Saddle node
 - Pitchfork
 - Trans-critical
- The normal form describes the behavior near the bifurcation.

- Introduction to bifurcations
- Saddle-node, transcritical and pitchfork bifurcations
- Examples
- Imperfect bifurcations & catastrophes

Example: neuron model

$$C \dot{V} = I - g_{L}(V - E_{L}) - \overbrace{g_{Na} m_{\infty}(V) (V - E_{Na})}^{\text{instantaneous } I_{Na,p}}$$

$$m_{\infty}(V) = 1/(1 + \exp\{(V_{1/2} - V)/k\})$$

$$\begin{array}{lll} C = 10 \ \mu \mathrm{F}, & I = 0 \ \mathrm{pA}, & g_{\mathrm{L}} = 19 \ \mathrm{mS}, & E_{\mathrm{L}} = -67 \ \mathrm{mV}, \\ g_{\mathrm{Na}} = 74 \ \mathrm{mS}, & V_{1/2} = 1.5 \ \mathrm{mV}, & k = 16 \ \mathrm{mV}, & E_{\mathrm{Na}} = 60 \ \mathrm{mV} \end{array}$$

$$E_{\rm L} = 19 \text{ mS}, \qquad E_{\rm L} = -67 \text{ m}$$

$$E_{\text{Na}} = 60 \text{ mV}$$

Saddle-node Bifurcation

Near the bifurcation point: slow dynamics

Campus d'Excel·lència Internacional

This slow transition is an "early warning signal" of a critical or dangerous transition ahead (more latter)

If the control parameter now decreases

 Simulate the neuron model with different values of the control parameter I and/or different initial conditions.

Example: laser threshold

$$\dot{n} = \text{gain} - \text{loss}$$

= $GnN - kn$.

$$N(t) = N_0 - \alpha n$$

$$\dot{n} = Gn(N_0 - \alpha n) - kn$$

$$= (GN_0 - k)n - (\alpha G)n^2 \qquad \dot{x} = rx - x^2$$

$$\dot{x} = rx - x^2$$

$$N_0 > k/G$$

Transcritical Bifurcation

Fig. 1.17 Imperfect bifurcation for a laser in the presence of spontaneous emission, measured for a He-Ne laser. Reprinted Figure 1 with permission from Corti and Degiorgio [42]. Copyright 1976 by the American Physical Society.

Fig. 1.3 He-Ne gas laser output as a function of time. From the lower to the upper time traces, the pump parameter above threshold is gradually increased. Reprinted Figure 2 with permission from Pariser and Marshall [30]. Copyright 1965 by the American Institute of Physics.

Laser turn-on delay

Campus d'Excel·lència Internacional

$$\dot{x} = rx - x^2$$

$$r(t) = r_0 + vt$$

Linear increase of control parameter

$$r_0 < r^* = 0$$

Start before the bifurcation point

Comparison with experimental observations

Am. J. Phys., Vol. 72, No. 6, June 2004

$$\dot{x} = rx - x^2$$

Simulate the equation with r increasing linearly in time. Consider different variation rate (v) and/or different initial value of the parameter (r_0).

$$v = 0.1$$

$$x_0 = 0.01$$

 Now consider that the control parameter r increases and then decreases linearly in time.

Plot *x* and *r* vs time and plot *x* vs *r*.

Calculate the "turn on" when r is constant, r>r*=0.

$$r(t) = r$$

$$x_0 = 0.01$$

 Calculate the bifurcation diagram by plotting x(t=50) vs r.

$$\dot{x} = rx - x^2 + h$$

 A particle moves along a wire hoop that rotates at constant angular velocity

$$mr\ddot{\phi} = -b\dot{\phi} - mg\sin\phi + mr\omega^2\sin\phi\cos\phi$$

Neglect the second derivative (more latter)

$$b\dot{\phi} = -mg\sin\phi + mr\omega^2\sin\phi\cos\phi$$
$$= mg\sin\phi \left(\frac{r\omega^2}{g}\cos\phi - 1\right)$$

• Fixed points from: $\sin \phi = 0$

 $\phi^* = 0$ (the bottom of the hoop) and $\phi^* = \pi$ (the top). stable

• Fixed points from: $\gamma \cos \phi - 1 = 0$

$$\gamma = \frac{r\omega^2}{g}$$

Pitchfork Bifurcation:

When is this "first-order" description valid? When is ok to neglect the second derivative $\frac{d^2x}{dt^2}$?

Dimensional analysis and scaling

Dimensionless equation

Campus d'Excel·lència Internacional

Dimensionless time $(T = \text{characteristic time-scale}) \quad \tau = \frac{t}{T}$

$$\left(\frac{r}{gT^2}\right)\frac{d^2\phi}{d\tau^2} = -\left(\frac{b}{mgT}\right)\frac{d\phi}{d\tau} - \sin\phi + \left(\frac{r\omega^2}{g}\right)\sin\phi\cos\phi$$

We want the lhs very small, we define T such that

$$\frac{r}{gT^2} <<1 \text{ and } \frac{b}{mgT} \approx O(1) \Rightarrow T = \frac{b}{mg}$$

$$\frac{r}{g} \left(\frac{mg}{b}\right)^2 <<1 \Rightarrow b^2 >> m^2 gr$$

Define: $\varepsilon = \frac{m^2 gr}{b^2} \implies \varepsilon \frac{d^2 \phi}{d\tau^2} = -\frac{d\phi}{d\tau} - \sin\phi + \gamma \sin\phi \cos\phi \qquad \gamma = \frac{r\omega^2}{g}$

$$\varepsilon \frac{d^2 \phi}{d\tau^2} = -\frac{d\phi}{d\tau} - \sin \phi + \gamma \sin \phi \cos \phi$$

- The dimension less equation suggests that the first-order equation is valid in the over damped limit: $\varepsilon \rightarrow 0$
- Problem: second-order equation has two independent initial conditions: $\phi(0)$ and $d\phi/d\tau(0)$
- But the first-order equation has only one initial condition $\phi(0)$, $d\phi/d\tau(0)$ is calculated from

$$\frac{d\phi}{d\tau} = -\sin\phi + \gamma\sin\phi\cos\phi$$

Paradox: how can the first-order equation represent the second-order equation?

Trajectories in phase space

Campus d'Excel·lència Internacional

First order system:

$$\frac{d\phi}{d\tau} = f(\phi) - \sin\phi + \gamma \sin\phi \cos\phi$$

Second order system:

$$\varepsilon \to 0$$

limit, all trajectories slam straight up or down onto the curve C defined by $f(\phi) = \Omega$, and then slowly ooze along this curve until they reach a fixed point

Second order system:

$$\varepsilon \frac{d^2 \phi}{d\tau^2} = -\frac{d\phi}{d\tau} - \sin \phi + \gamma \sin \phi \cos \phi$$

- Introduction to bifurcations
- Saddle-node, transcritical and pitchfork bifurcations
- Examples
- Imperfect bifurcations & catastrophes

Imperfect bifurcations

$$\dot{x} = h + rx - x^3$$

$$\dot{x} = h + rx - x^3$$

Exercise: using these two equations

- 1. fixed points: $f(x^*) = 0$
- 2. saddle node bifurcation: $f'(x^*) = 0$ Calculate $h_c(r)$

$$h_c = \pm \frac{2r}{3} \sqrt{\frac{r}{3}}$$

Example: insect outbreak

$$\dot{N} = RN \left(1 - \frac{N}{K} \right) - p(N)$$

- Budworms population grows logistically (R>0 grow rate)
- p(N): dead rate due to predation
- If no budworms (N≈0): no predation: birds look for food elsewhere
- If N large, p(N) saturates: birds eat as much as they can.

$$p(N) = \frac{BN^2}{A^2 + N^2}$$
 $A, B > 0$

Dimensionless formulation

Campus d'Excel·lència Internacional

$$x = N/A \qquad \tau = \frac{Bt}{A} , \qquad r = \frac{RA}{B} , \qquad k = \frac{K}{A}$$

$$\frac{dx}{d\tau} = rx \left(1 - \frac{x}{k}\right) - \frac{x^2}{1 + x^2}$$

- *x**=0
- Other FPs from the solution of $r\left(1 \frac{x}{k}\right) = \frac{x}{1 + x^2}$

Independent of r and k

 When the line intersects the curve tangentially (dashed line): saddle-node bifurcation

a: Refuge level of the budworm population

b: threshold

c: Outbreak level (pest)

Exercise: show that x*=0 is always unstable

Parameter space (k, r)

Bibliography

- Steven H. Strogatz: Nonlinear dynamics and chaos, with applications to physics, biology, chemistry and engineering (Addison-Wesley Pub. Co., 1994). Chapter 3
- Thomas Erneux and Pierre Glorieux: Laser Dynamics (Cambridge University Press 2010)
- Eugene M. Izhikevich: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (MIT Press 2010)

