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 Deadline for presenting the reports (two weeks after the 

course finishes):  

Friday April 20, 2018 
 Reports received up to 48 hours after deadline will be 

penalized by 50% and will not be accepted after that. 

 Advise: Finalize a first draft of each report as soon as each 

module finishes. 

 Reports should be sent by email to C.M. or A.P. as a single 

pdf file, figures should be numbered and the codes for 

generating each fig. should be included (as plain text) in an 

appendix. 



 Flows on the line = first-order ordinary differential 

equations. 

  dx/dt = f(x) 

 Fixed point solutions: f(x*) =0 

• stable if f´(x*) <0  

• unstable if f´(x*) >0 

• neutral (bifurcation point) if f´(x*) = 0 

 There are no periodic solutions; the approach to fixed point 

solutions is monotonic (sigmoidal or exponential). 

Reminder Summary Part 1 
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 A qualitative change (in the structure of the phase 

space) when a control parameter is varied: 

• Fixed points can be created or destroyed 

• The stability of a fixed point can change 

 There are many examples in physical systems, 

biological systems, etc. 

What is a bifurcation? 



Example 

Control parameter increases in time 



Bifurcation and potential 



Bifurcation but no change of 

behavior 

Change of behavior but no 

bifurcation 

Bifurcations are not equivalent to 

qualitative change of behavior 
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Saddle-node bifurcation 
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rrf  2)('
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At the bifurcation  

point r*=0: 0*)(' xf

Stable if r<0 

unstable 

Basic mechanism for the creation or the destruction of fixed points 



 Calculate the fixed points and their stability 

as a function of the control parameter r 

Example 

rx *



 Are representative of all saddle-node bifurcations. 

 

 Close to the saddle-node bifurcation the dynamics 

can be approximated by  

 

Normal forms 

or 

Example: 



Near a saddle-node bifurcation 



“ 

A pair of fixed points appear (or disappear) out of the “clear 

blue sky” (“blue sky” bifurcation, Abraham and Shaw 1988). 

Bifurcation diagram 

Two fixed points → one fixed point → 0 fixed point 



Transcritical bifurcation 

rx

x


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*

* 0
are the fixed points for all r  

Transcritical bifurcation: general mechanism for changing 

the stability of fixed points. 



 Exchange of stability at r = 0. 

Bifurcation diagram 

xrxf 2)(' 

rf )0('

rrf )('

 Exercise:  

   show that a transcritical bifurcation occurs near x=1 

   (hint: consider u = x-1 small)  



Pitchfork bifurcation 

Symmetry x → -x 

One fixed point → 3 fixed points 



 The governing equation is symmetric: x  -x  

 but for r > 0: symmetry broken solutions. 

Bifurcation diagram 

Bistability 

0*x



Potential 



Pitchfork bifurcations 

Supercritical:  

x3 is stabilizing 

Subcritical:  

x3 is destabilizing 



Exercise: find the fixed points 

and compute their stability 



Subcritical bifurcation: 

Hysteresis 

Critical or dangerous transition! A lot of effort in trying to 

find “early warning signals” (more latter) 



Hysteresis: sudden changes in 

visual perception 

Fischer 

(1967): 

experiment 

with 57 

students. 

“When do you 

notice an 

abrupt change 

in perception?” 



 Bifurcation condition: change in the stability of a fixed 

point  

   f ´(x*) = 0 

 

 In first-order ODEs: three possible bifurcations 

• Saddle node 

• Pitchfork 

• Trans-critical 

 

 The normal form describes the behavior near the 

bifurcation. 

Summary 
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Example: neuron model 



Saddle-node Bifurcation 



Near the bifurcation point: slow 

dynamics 

This slow transition is an “early warning signal” of a 

critical or dangerous transition ahead (more latter) 



If the control parameter now 

decreases 



Class/home work 
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 Simulate the neuron model with different values of the 

control parameter I and/or different initial conditions. 

 



Example: laser threshold 



Transcritical Bifurcation 



“imperfect” bifurcation due to 

noise 



Laser turn on 



Laser turn-on delay 

vtrtr  0)( 0*0  rr

Linear increase of 

control parameter 

Start before the 

bifurcation point 

r 



Comparison with 

experimental observations 

Dynamical hysteresis 

Quasi-static very slow 

variation of the control 

parameter 



Class/home work with matlab 
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 Simulate the equation with r increasing linearly in time. 

Consider different variation rate (v) and/or different initial 

value of the parameter (r0). 
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 Now consider that the control parameter r increases and 

then decreases linearly in time.  

 Plot x and r vs time and plot x vs r.  
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 Calculate the “turn on” 

when r is constant, r>r*=0.  

 Calculate the bifurcation 

diagram by plotting x(t=50) vs r.  
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 A particle moves along a 

wire hoop that rotates at 

constant angular velocity 

Example: particle in a 

rotating wire hoop 



 Neglect the second derivative (more latter) 

 Fixed points from: sin  = 0 

 Fixed points from:  cos  -1 = 0 

stable unstable 



Pitchfork Bifurcation: 

When is this “first-order” description valid? 

 When is ok to neglect the second derivative d2x/dt2 ? 

Dimensional analysis and scaling 



 Dimensionless time  

 (T = characteristic time-scale) 

Dimensionless equation 

 We want the lhs very small, we define T  such that 

 

and   

  Define: 



 The dimension less equation suggests that the first-

order equation is valid in the over damped limit: 0 

Over damped limit 

 Problem: second-order equation has two independent 

initial conditions: (0) and d/d(0) 

 But the first-order equation has only one initial condition 

(0), d/d(0) is calculated from 

 Paradox: how can the first-order equation represent 

the second-order equation? 





cossinsin 

d

d



 First order system: 

Trajectories in phase space 

Second order system: 





cossinsin)(  f

d

d

 Second order system: 
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Imperfect bifurcations 



Parameter space (h, r) 

Exercise : using these two equations 

1. fixed points: f(x*) = 0  

2. saddle node bifurcation: f’(x*) =0 

Calculate hc(r)  
33

2 rr
hc 



 Budworms population grows logistically  (R>0 grow rate) 

 p(N): dead rate due to predation 

 If no budworms (N0): no predation: birds look for food 

elsewhere 

 If N large, p(N) saturates: birds eat as much as they can. 

Example: insect outbreak 



Dimensionless formulation 

 x*=0 

 Other FPs from the solution of 

 Independent 

of r and k 



 When the line intersects the curve tangentially 

(dashed line): saddle-node bifurcation 

 a: Refuge level 

of the budworm 

population 

 c: Outbreak level (pest) 
 b: threshold 

Exercise : show that x*=0 is always unstable 



Parameter space (k, r) 



 Steven H. Strogatz: Nonlinear dynamics and 

chaos, with applications to physics, biology, 

chemistry and engineering (Addison-Wesley Pub. 

Co., 1994). Chapter 3 
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