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About me

• Originally from Montevideo, Uruguay

• PhD in physics (lasers, Bryn Mawr College, USA)

• Since 2004 @ Universitat Politecnica de Catalunya, 

in the research group on Dynamics, Nonlinear 

Optics and Lasers.



Where are we?



Nonlinear

dynamics

Data analysis

Applications
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 Nonlinear and stochastic 

phenomena 

‒ laser dynamics

‒ neuronal dynamics

‒ complex networks

‒ data analysis (climate, 

biomedical signals)

What do we study?



Lasers, neurons and complex systems?

5

 Lasers allow us to study in a controlled way phenomena that 

occur in diverse complex systems.

 Laser experiments allow to generate sufficient data to test new 

methods of data analysis for prediction, classification, etc.

Ocean rogue wave (sea surface

elevation in meters)

Extreme events (optical rogue waves)

Abrupt switching

Laser & neuronal spikes



Video: how complex optical signals 

emerge from noisy fluctuations
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In complex systems dynamical transitions 

are difficult to identify and to characterize. 

Example: laser with time delayed optical feedback

Time

Laser intensity

https://youtu.be/nltBQG_IIWQ


Can differences be quantified? With what reliability?

Time

Laser output intensity

Low current (noise?)

High current (chaos?)



Are weather extremes becoming more frequent?

more extreme?

Credit: Richard Williams, North Wales, UK

Physics Today, Sep. 2017

ECMWF 



Strong need of reliable data analysis tools



 Introduction

− Historical developments: from dynamical systems to complex systems

 Univariate analysis

− Methods to extract information from a time series. 

− Applications to climate data.

 Bivariate analysis

− Extracting information from two time series.

− Correlation, directionality and causality. 

− Applications to climate data.

 Multivariate analysis

‒ Many time series: complex networks. 

‒ Network characterization and analysis. 

‒ Climate networks.

Outline

10



Introduction:

From dynamical systems to 

complex systems
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Optical spikes Neuronal spikes

• Similar dynamical systems generate these signals?

• Ok, very different dynamical systems, but similar 

statistical properties?

Time (s)

Time Series Analysis: what is this about?



 Extract information from a time series {x1, x2, … xN}.

 What for?

‒ Classification

‒ Prediction 

‒ Model verification & identification

‒ Parameter estimation (assuming we have a good 

model).

Time Series Analysis: main goal
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Hamming distanceDissimilarity measure

T. A. Schieber et al, Nat. Comm. 8:13928 (2017).

Classification: 

control vs alcoholic subjects

http://www.nature.com/articles/ncomms13928.pdf


Prediction of extremes:

Ultra-intense light pulses
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Inferring underlying interactions 
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Surface Air Temperature

Anomalies in different 

geographical regions

Donges et al, Chaos 2015

https://arxiv.org/abs/1507.01571


Model identification, 

parameter estimation
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Aragoneses et al, Sci. Rep. 4, 4696 (2014)

Carpi and Masoller, Phys. Rev. A 97, 023842 (2018)

Empirical data Known model Minimal model

?

And much more, so let’s begin!

https://www.nature.com/articles/srep04696.pdf
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.97.023842


 Many methods have been developed to extract information 

from a time series.

 The method to be used depends on the characteristics of the 

data

− Length of the time series; 

− Stationarity; 

− Level of noise; 

− Temporal resolution;

− etc.

 Different methods provide complementary information.

Methods
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 Modeling assumptions about the type of dynamical system 

that generates the data:

‒ Stochastic or deterministic?

‒ Regular or chaotic or “complex”?

‒ Stationary or non-stationary? Time-varying parameters?

‒ Low or high dimensional?

‒ Spatial variable? Hidden variables?

‒ Time delays?

‒ Etc.

 Brief historical tour: from dynamical systems to complex 

systems.

Where the data comes from?

19



 Mid-1600s: Ordinary differential equations (ODEs)

 Isaac Newton: studied planetary orbits and 

solved analytically the “two-body” problem (earth 

around the sun).

 Since then: a lot of effort for solving the “three-

body” problem (earth-sun-moon) – Impossible.

First studies of dynamical systems



 Henri Poincare (French mathematician). 

Instead of asking “which are the exact positions of planets 

(trajectories)?” 

he asked: “is the solar system stable for ever, or will planets 

eventually run away?”

 He developed a geometrical approach to solve the problem.

 Introduced the concept of “phase space”.

 He also had an intuition of the possibility of chaos

Late 1800s



Deterministic system: the initial conditions fully 

determine the future state.  There is no randomness 

but the system can be unpredictable.

Poincare: “The evolution of a deterministic

system can be aperiodic, unpredictable, and 

strongly depends on the initial conditions”



 Computes allowed to experiment with equations.

 Huge advance of the field of “Dynamical Systems”.

 1960s: Eduard Lorentz (American mathematician 

and meteorologist at MIT): simple model of 

convection rolls in the atmosphere.

 Chaotic motion.

1950s: First simulations



In the late 1800s Aleksandr Lyapunov (Russian 

mathematician) developed the (linear) stability theory 

of a dynamical system.

 The Lyapunov exponent (LE): characterizes the 

rate of separation of infinitesimally close trajectories.
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 The rate of separation can be different for different 

orientations of the initial separation vector → there is a 

spectrum of Lyapunov exponents; the number of LEs is 

equal to the dimension of the phase space. 

 The largest LE quantifies the system’s predictability.

 More latter on how to compute LEs of real-world signals.

Lyapunov exponents



 Ilya Prigogine (Belgium, born in Moscow, Nobel 

Prize in Chemistry 1977)

 Thermodynamic systems far from equilibrium.

 Discovered that, in chemical systems, the 

interplay of (external) input of energy and 

dissipation can lead to “self-organized” patterns.

Order within chaos and 

self-organization



 Robert May (Australian, 1936): population biology

 "Simple mathematical models with very 

complicated dynamics“, Nature (1976).

The 1970s

 Difference equations (“iterated maps”), even though 

simple and deterministic, can exhibit different types of 

dynamical behaviors, from stable points, to a 

bifurcating hierarchy of stable cycles, to apparently 

random fluctuations. 
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The logistic map
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“period-doubling” 

bifurcations to chaos
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Parameter r

x(i)

r=2.8, Initial condition: x(1) = 0.2

Transient relaxation → long-term stability

Transient 

dynamics 

→ stationary 

oscillations

(regular or 

irregular)



 In 1975, Mitchell Feigenbaum (American 

mathematical physicist), using a small 

HP-65 calculator, discovered the scaling 

law of the bifurcation points

Universal route to chaos

...6692.4lim
1
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 Then, he showed that the same behavior, 

with the same mathematical constant, 

occurs within a wide class of functions, prior 

to the onset of chaos (universality).

Very different systems (in chemistry, 

biology, physics, etc.) go to chaos in 

the same way, quantitatively.

HP-65 calculator: the 

first magnetic card-

programmable 

handheld calculator



 Benoit Mandelbrot (Polish-born, French 

and American mathematician  1924-

2010): “self-similarity” and fractal 

objects: 

each part of the object is like the whole 

object but smaller.

 Because of his access to IBM's 

computers, Mandelbrot was one of the 

first to use computer graphics to create 

and display fractal geometric images.

The late 1970s



 Are characterized by a “fractal” dimension that measures 

roughness.

Fractal objects

Video: http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180

Broccoli

D=2.66

Human lung

D=2.97
Coastline of 

Ireland

D=1.22

http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180


 Example: the fractal dimension of a coastline quantifies how 

the number of scaled measuring sticks required to measure 

the coastline changes with the scale applied to the stick.

Fractal dimension
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 Fractal dimension:

Source: wikipedia

→



Example of application of fractal analysis: 

distinguishing between diabetic retinopathy and normal patients
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Source: Pablo Amil, UPC

→

The fractal dimension of the blood vessels 
− in the normal human retina is 1.7

− tends to increase with the level of diabetic retinopathy 

− varies considerably depending on the image quality and the technique 

used for measuring the fractal dimension



The 1990s: synchronization of chaotic systems
Pecora and Carroll, PRL 1990

Unidirectional coupling of two Lorenz systems: the ‘x’ 

variable of the response system is replaced by the ‘x’ 

variable of the drive system.



http://www.youtube.com/watch?v=izy4a5erom8

In mid-1600s Christiaan Huygens (Dutch 

mathematician) noticed that two pendulum clocks 

mounted on a common board synchronized with 

their pendulums swinging in opposite directions (in-

phase also possible).

First observation of synchronization: 

entrainment of pendulum clocks

http://www.youtube.com/watch?v=izy4a5erom8


Different types of synchronization

 Complete: x1(t) = x2(t) (identical systems) 

 Phase:  the phases of the oscillations synchronize, but 

the amplitudes are not.

 Lag: x1(t+) = x2(t)

 Generalized:   x2(t) = f( x1(t) ) (f can depend on the 

strength of the coupling)

A lot of work is being devoted to develop methods able to 

detect synchronization in real-world signals.



Synchronization of a large 

number of coupled oscillators  



Model of all-to-all coupled phase oscillators. 

K = coupling strength, i = stochastic term (noise) 

Describes the emergence of collective behavior

How to quantify?      

With the order parameter:
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Kuramoto model

(Japanese physicist, 1975)

r =0 incoherent state (oscillators scattered in the unit circle)

r =1 all oscillators are in phase (i=j  i,j)



Synchronization transition as the 

coupling strength increases

Strogatz, Nature 2001

Strogatz and 

others, late 90’ 

Video: https://www.ted.com/talks/steven_strogatz_on_sync

https://www.ted.com/talks/steven_strogatz_on_sync


 Interest moves from chaotic systems to complex systems

(small vs. very large number of variables).

 Networks (or graphs) of interconnected systems

 Complexity science: dynamics of emergent properties

‒ Epidemics

‒ Rumor spreading

‒ Transport networks

‒ Financial crises

‒ Brain diseases

‒ Etc.

End of 90’s - present



Network science

Source: Strogatz

Nature 2001

The challenge: to understand how the network structure 

and the dynamics (of individual units) determine the 

collective behavior.



 The problem was to devise a walk through the city that 

would cross each of those bridges once and only once. 

The start of Graph Theory: 

The Seven Bridges of Königsberg
(Prussia, now Russia)
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 By considering the number of odd/even links of each 

“node”, Leonhard Euler (Swiss mathematician) 

demonstrated in 1736 that is impossible. 

→ →

Source: Wikipedia



Summary

 Dynamical systems allow to 

‒ understand low-dimensional systems, 

‒ uncover patterns and “order within chaos”, 

‒ characterize attractors, uncover universal features

 Synchronization: emergent behavior of interacting dynamical 

systems.

 Complexity and network science: emerging phenomena in 

large sets of interacting units.

 Complexity science is an 

interdisciplinary research field 

with many applications.



<cristina.masoller@upc.edu> 
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