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 Introduction

− Historical developments: from dynamical systems to complex systems

 Univariate analysis

− Methods to extract information from a time series. 

− Applications to climate data.

 Bivariate analysis

− Extracting information from two time series.

− Correlation, directionality and causality. 

− Applications to climate data.

 Multivariate analysis

‒ Many time series: complex networks. 

‒ Network characterization and analysis. 

‒ Climate networks.
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Using statistical similarity 

measures to infer interactions: 

“functional networks”



Brain functional network

18/11/2018

Eguiluz et al, PRL 2005

Chavez et al, PRE 2008

Sij > Th

 Aij = 1, 

else Aij=0



Complex network representation 

of the climate system

Donges et al, Chaos 2015

Surface Air Temperature

Anomalies (solar cycle removed)

Back to the climate 

system: interpretation 

(currents, winds, etc.)

More than 

10000 

nodes.

Daily 

resolution: 

more than 

13000 data 

points in 

each TS
Sim. measure 

+ threshold



Brain network Climate network
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Weighted 

degree



Statistical similarity measure
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AWC computed with cross-correlation AWC computed with mutual information

Donges et al, Eur. Phys. J. Special Topics 174, 157 (2009)

The threshold was selected to give a network with the same link density (0.005)

https://arxiv.org/abs/0907.4359


Influence of the threshold
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=0.027 =0.01 =0.001 

M. Barreiro, et. al, Chaos 21, 013101 (2011)

http://www.fisica.edu.uy/~cris/Pub/chaos_2011.pdf


Three criteria are typically used: 

 A significance level is used (typically 5%) in 

order to omit connectivity values that can be 

expected by chance;

 We select an arbitrary value as threshold, such 

that it gives a certain pre-fixed number of links 

(or link density);

 We define the threshold as large as possible 

while guaranteeing that all nodes are connected 

(or a so-called “giant component” exists).

How to select the threshold?

10
C. M. van Wijk et al., “Comparing Brain Networks of Different Size and

Connectivity Density Using Graph Theory”, PLoS ONE 5, e13701 (2010)



 Statistical similarity measure (CC, MI, etc.) 

Sij > Th  Aij = 1, else Aij=0

Problems with thresholding
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The number

of connected 

components

as a function 

of threshold 

reveals 

different  

structures.

Homogeneous 

network

Modular 

network

 But thresholding near the dotted lines would suggest 

inaccurately that these two networks have similar structures.

 “Features” that persist for a wide range of thresholds are 

"true" features.

Giusti et al., J Comput Neurosci (2016) 41:1–14



Connected components
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A graph with three connected components.

Source: Wikipedia



Software
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pyunicorn is available at https://github.com/pik-copan/

https://github.com/pik-copan/


Graphical representation of the climate network

high 

connectivity

low 

connectivity

Network obtained with ordinal analysis using 

inter-annual time-scale (3 consecutive 

years).  The color-code indicates the Area 

Weighted Connectivity (weighted degree) 

J. I. Deza, M. Barreiro, and C. Masoller, Eur. Phys. J. Special Topics 222, 511 (2013)

http://www.fisica.edu.uy/~cris/Pub/epjst_deza_2013.pdf


Network when the probabilities are 

computed with ordinal analysis
Network when the probabilities are 

computed with histogram of values
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Comparison: histogram vs. 

ordinal mutual information

Color code indicates the area-

weighted connectivity

inter-annual 

time scale



Who is connected to who?

color-code indicates the MI 

values (only significant values) 

J. I. Deza, M. Barreiro, and C. Masoller, Eur. Phys. J. Special Topics 222, 511 (2013)

AWC map

http://www.fisica.edu.uy/~cris/Pub/epjst_deza_2013.pdf


All significant links Higher threshold

Influence of the threshold

(3% link density)

Color code:

MI

Color code: 

AWC

Video

(11% link density)

http://youtu.be/VKwwpNM0-Us


Influence of the time-scale of the pattern
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Longer time-scale  increased connectivity



Network characterization



 Adjacency matrix: Aij = 1 if i and j are connected, else Aij = 0.

 Degree of a node ki = j Aij

 Clustering coefficient: measures the fraction of a node’s 

neighbors that are neighbors also among themselves

Definitions (for unweighted and undirected graphs)
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Ri is the number of connected pairs 

in the set of neighbors of node i

 Assortativity: tendency of a node to be 

connected to nodes with high degree

 Diameter: longest shortest path

 Node entropy: in weighted networks,  

measures the diversity of the weights 

of the links attached to node i.



Example: 

desertification transition under 

the lens of network analysis



Our goal: to develop reliable early-warning indicators 



Role of the network structure
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Networks in which the components are 

heterogeneous and where incomplete 

connectivity causes modularity tend to 

gradually adjust to change.

In highly connected networks, local losses 

tend to be “repaired” by subsidiary inputs 

from linked units until at a critical stress 

level the system collapses.

Scheffer et al. Science 338, 344 (2012)



Can we use “correlation networks” 

to detect a tipping point?



 w (in mm) is the soil water amount 

 B (in g/m2) is the vegetation biomass 

 Uncorrelated Gaussian white noise 

 R (rainfall) is the bifurcation parameter

Desertification transition: model

Shnerb et al. (2003), Guttal & Jayaprakash (2007), Dakos et al. (2011)



Saddle-node bifurcation

R<Rc: only desert-like solution (B=0)

Rc = 1.067 mm/day



Biomass time series

Biomass B when R=1.1 mm/day

100 m x 100 m = 104 grid cells

Simulation time 5 days in 500 time steps

Periodic boundary conditions  



Correlation Network

Zero-lagged

cross-correlation

Threshold 

=0.2 gives p<0.05

Adjacency matrix

G. Tirabassi et al., Ecological Complexity (2014)

http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf


‘‘Randomization’’ of the correlation network as the 

tipping point is approached

clustering 

assortativity 

skewness kurtosis 



The ‘‘Gaussianisation’’ of the distributions of ai & ci

values is quantified by the Kullback–Leibler Distance 

G. Tirabassi et al., Ecological Complexity 19, 148 (2014)

 Open issue: the 

“Gaussianisation” 

might be a model-

specific feature.

 How to quantify the 

changes of the 

network?

 We need a distance 

to compare graphs.

http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf


How to compare different 

networks?



 Hamming distance

Labelled networks with the same size

32

 Main problem: not all the links have the same importance.

L. C. Carpi et al arXiv:1805.12350v1 (2018)



 Degree, centrality, assortativity distributions etc. provide 

partial information.

 How to define a measure that contains detailed 

information about the global topology of a network, in a 

compact way?

 Node Distance Distributions (NDDs)

 pi(j) of node “i“ is the fraction of nodes that are connected 

to node i at distance j

 If a network has N nodes:

NDDs = vector of N pdfs {p1, p2, …, pN}

 If two networks have the same set of NDDs  they have 

the same diameter, average path length, etc.

In order to detect structural differences we need 

a precise measure to compare networks



 The Network Node Dispersion (NND) measures the 

heterogeneity of the N pdfs {p1, p2, …, pN}

 Quantifies the heterogeneity of connectivity distances.

How to condense the information contained in the 

node distance distributions?

d = diameter



 Extensive numerical experiments demonstrate that 

isomorphic graphs return D=0.

 Computationally efficient.

Dissimilarity between two networks

w1=w2=0.5

compares the 

averaged 

connectivity

compares the 

heterogeneity of the 

connectivity distances



 EEG data

‒ https://archive.ics.uci.edu/ml/datasets/eeg+database

‒ 64 electrodes placed on the subject’s scalp sampled at 256 

Hz during 1s

‒ 107 subjects: 39 control and 68 alcoholic

 Use HVG to transform each EEG TS into a network G.

 Weight between two brain regions: 1-D(G,G’)

 The resulting network represents the weighted similarity 

between the brain regions of an individual.

 We can compare the different individuals.

Application: comparing brain networks



Hamming distanceDissimilarity measure

T. A. Schieber et al, Nat. Comm. 8, 13928 (2017)

Two brain regions are identified (‘nd’ and ‘y’): the weights of 

the links are higher in control than in alcoholic subjects

http://www.nature.com/articles/ncomms13928.pdf


Network inference: 

how to infer the underlying 

interactions from observed data?

a classification problem 



 How to select the threshold?

 In “spatially embedded networks”, nearby nodes 

have the strongest links.

 How to keep weak-but-significant links?

 There are many statistical similarity measures to 

infer bi-variate mutual interactions from 

observations, i.e., to classify: 

− the interaction exists (is significant)

− the interaction does not exists (or is not 

significant)

Main problem:

39

Sij > Th  Aij = 1 else Aij=0



 Accuracy: How often is the classifier correct? (TP+TN)/total

 Misclassification (Error Rate): How often is it wrong? (FP+FN)/total

 True Positive Rate (TPR, Sensitivity): When it's yes, how often does it 

predict yes? TP/actual yes

 False Positive Rate (FPR) : When it's no, how often does it predict yes? 

FP/actual no

 Specificity (1 – FPR) : When it's no, how often it predicts no? TN/actual no

 Precision (Positive Predictive Value): When it predicts yes, how often is it 

correct? TP/predicted yes

 Negative Predictive Value: When it predicts no, how often is it correct? 

TN/predicted no

 Prevalence: How often does the yes condition actually occur in the sample? 

actual yes/total

Confusion matrix
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Receiver operating characteristic (ROC curve)
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Similarity measure 1

Similarity measure 2

Similarity measure 3

Source: wikipedia



 To compare the performance of different 

statistical similarity measures for inferring 

interactions from observations.

 Using a “toy model” where we know the 

underlying equations and interactions and so we 

can check the performance of the different 

measures in inferring the interactions.

Our goal

42



Kuramoto oscillators in a random network

Phases () CC MI MIOP

Aij is a symmetric 

random matrix; 

N=12 time-series, each 

with 104 data points.

“Observable” Y=sin()

True positives False positives True positives False positives

Results of a 100 simulations with different oscillators’ frequencies, random 

matrices, noise realizations and initial conditions.

For each K, the threshold was varied to obtain optimal reconstruction.



Instantaneous frequencies (d/dt)

CC MI MIOP

Perfect network inference is possible! 

BUT 

• the number of oscillators is small (12), 

• the coupling is symmetric (  only 66 possible links) and

• the data sets are long (104 points)

G. Tirabassi et al, Sci. Rep. 5 10829 (2015) 

https://www.nature.com/articles/srep10829.pdf
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We also analyzed experimental data recorded from 12 chaotic 

Rössler electronic oscillators (symmetric and random coupling)

The Hilbert Transform 

was used to obtain 

phases from 

experimental data

G. Tirabassi et al, Sci. Rep. 5 10829 (2015) 

https://www.nature.com/articles/srep10829.pdf
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Results obtained with 

experimental data

Masoller 47

Observed 

variable (x) 

Hilbert phase 

Hilbert frequency

CC MI MIOP

‒ No perfect 

reconstruction

‒ No important 

difference 

among the 3 

methods & 3 

variables



Community detection



 Goal: to construct a network in 

which regions with similar climate 

(e.g., continental) are in the same 

“community”.

 Problem: not possible with the 

“usual” correlation-based method 

to construct the network because 

NH and SH are only indirectly 

connected.
49

Climate “communities”

How to identify regions with similar climate?



 Step 1: transform SAT anomalies in each node in a sequence 

of symbols (we use ordinal patterns)

si = {012, 102, 210, 012…}        sj = {201, 210, 210, 012, …}

 Step 2: in each node compute the transition probabilities

TP i = #(→)/N

 Step 3: define the weights

 Step 4: threshold wij to obtain the adjacency matrix.

 Step 5: run a community detection algorithm (Infomap).

Network construction based on 

similar symbolic dynamics

50

  






2

1

ji
ij

TPTP
w

High weight 

if similar 

symbolic 

“language”



Results
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TP Network CC Network (only the largest 16)

G. Tirabassi and C. Masoller, “Unravelling the community structure of 

the climate system by using lags and symbolic time-series analysis”, 

Sci. Rep. 6, 29804 (2016).

http://www.nature.com/articles/srep29804


 Infomap (http://www.mapequation.org/code.html) 

and many others.

 Infomap clusters tightly interconnected nodes 

into modules and detects nested modules.

 Many other algorithms have been proposed.

 Further reading: S. Fortunato, “Community 

detection in graphs”, Phys. Rep. 486, 75 (2010).

Community detection algorithms
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 Analyze lag-times between seasonal cycles: cross-correlation 

analysis of Surface Air Temperature
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Another way to identify geographical 

regions with similar climate

Rome

Buenos Aires

 The lags between 3 time 

series are well defined if

ij = (ik + kj)mod12



54G. Tirabassi and C. Masoller, Sci. Rep. 6:29804 (2016)

• Six-month lag between the two hemispheres.

• Oceans have a one-month lag with respect to the landmasses

Geographical regions with synchronous 

(inphase) seasonal cycles

http://www.nature.com/articles/srep29804


How to detect phase 

synchronization in climate data?



Network of individual oscillators

18/11/2018 Masoller 56



After using the Hilbert transform to obtain phase time 

series, we calculate the Kuramoto order parameter

57



Generalizations of complex 

network analysis



Network structures:

Multilayer, multiplex, bipartite, networks of 

networks and many others
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Example of a bilayer climate network representing 

ocean-precipitation interactions
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Color code shows the area-weighted connectivity (weighted 

degree) of a bilayer network where the links are defined using 

Granger causality (only GCE values at 99% confidence level 

have been considered). 

SST = Surface sea temperature

 = vertical wind velocity at 500 hPa (precipitation proxy)

Tirabassi, Masoller and Barreiro, Int. J. of Climatology, 35, 3440 (2015)

http://onlinelibrary.wiley.com/doi/10.1002/joc.4218/abstract


 Links represent interactions between pairs of nodes.

 Simplicial complexes represent interactions among 

several nodes.

A basic limitation of network analysis

61

Example

Giusti et al., J Comput Neurosci (2016) 41:1–14



Concluding



 There are many methods for inferring the underlying 

connectivity of a complex system from the observed output 

signals.

 Different methods infer different networks.

 Comparing (quantifying differences) between networks is 

challenging.

 Different sets of “communities” (clusters) can be uncovered 

depending on the property that is analyzed. 

 Network science is growing fast and has many 

applications!

Take home messages
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