
Nonlinear time series analysis:
Univariate analysis

Cristina Masoller
Universitat Politecnica de Catalunya, Terrassa, Barcelona, Spain

Cristina.masoller@upc.edu

www.fisica.edu.uy/~cris



▪ Introduction

− Historical developments: from dynamical systems to complex systems

▪ Univariate analysis

− Methods to extract information from a time series. 

− Applications to climate data.

▪ Bivariate analysis

− Extracting information from two time series.

− Correlation, directionality and causality. 

− Applications to climate data.

▪ Multivariate analysis

‒ Many time series: complex networks. 

‒ Network characterization and analysis. 

‒ Climate networks.

Outline
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▪ Return maps

▪ Distribution of data values

▪ Correlation and Fourier analysis

▪ Lyapunov and fractal dimensions

▪ Stochastic models and surrogates

▪ Symbolic methods 

▪ Information theory measures: entropy and complexity

▪ Network representation of a time-series

▪ Spatio-temporal representation of a time-series

▪ Instantaneous phase and amplitude

Methods of time-series analysis
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X = {x1, x2, … xN}

▪ First step: Look at the data. 

▪ Examine simple properties: 

‒ Return map (plot of xi vs. xi+) 

‒ Distribution of data values

‒ Auto correlation

‒ Fourier spectrum

To begin with 
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Bi-decadal oxygen isotope data set d18O (proxy for 

palaeotemperature) from Greenland Ice Sheet Project 

Two (GISP2) for the last 10,000 years with 500 values 

given at 20 year intervals.

First example of a geophysical time series

5
A. Witt and B. D. Malamud, Surv Geophys (2013) 34:541–651



Discharge of the Elkhorn river (at Waterloo, Nebraska, 

USA) sampled daily for the period from 01 January 

1929 to 30 December 2001.

Second example

6
A. Witt and B. D. Malamud, Surv Geophys (2013) 34:541–651



The geomagnetic auroral electrojet (AE) index sampled 

per minute for the 24 h period of 01 February 1978 and 

the differenced index:

Third example

7
A. Witt and B. D. Malamud, Surv Geophys (2013) 34:541–651



▪ The return maps reveal different degrees of 

correlations between consecutive data values.

▪ How to quantify?

▪ Linear tool: the autocorrelation function

Autocorrelation function
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Autocorrelation: 

Quantifies persistence (memory)

9

▪ Persistence: large values tend to follow large ones, and 

small values tend to follow small ones. 

▪ Anti-persistence: large values tend to follow small ones 

and small values large ones.

▪ Short-range correlations: values are correlated with one 

another at short lags in time

▪ Long-range correlations: values are correlated with one 

another at very long lags in time (all or almost all values are 

correlated with one another)



Back to the three examples of 

geophysical time series

10
A. Witt and B. D. Malamud, Surv Geophys (2013) 34:541–651



Synthetic model: 

first-order autoregressive (AR(1)) process 
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White noise

A. Witt and B. D. Malamud, Surv Geophys (2013) 34:541–651



▪ Climate phenomena occurs with a wide range of time-scales

‒ hours to days,

‒ months to seasons, 

‒ decades to centuries,

‒ and even longer...

Spectral analysis

An ‘‘artist’s 

representation’’ of the 

power spectrum of 

climate variability (Ghil

2002).



▪ Discrete Fourier transform

 = sampling interval

Xk = complex Fourier coeff. associated to freq. fk= k/(N)

▪ PSD:

▪ How to calculate? Fast Fourier Transform (FFT)

▪ Further reading: 

Press WH et al. Numerical recipes in C/Fortran: the art of 

scientific computing (Cambridge University Press)

Power spectral density (PSD)
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▪ Discrete Fourier transform

is designed for ‘circular’ time series (i.e. the last and first 

values in the time series ‘follow’ one another).

▪ Large values of xN-x1 (typical in non-stationary time series) 

can result in spurious artifacts.

▪ It is recommended to normalize to =0, =1 and to remove 

the trend (“detrend”) before computing the FFT.

▪ Simple ways to detrend:

− Take the best-fit straight line to the time series and 

subtract it from all the values.

− Connect a line from the first point to the last point and 

subtract this line from the time series, forcing xN=x1=0

Numerical technicalities 
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Pre-processing to reduce the impact of 

the initial and final data points
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▪ Choose a “weight shape” and multiply each value of 

the time series by its weight. 

A. Witt and B. D. Malamud, Surv Geophys (2013) 34:541–651



Example: El Niño 3.4 index

Sea surface temperature (SST) anomaly in the eastern

tropical Pacific Ocean
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Year resolution, Source: climate explorer

Month resolution:

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.anom.data

▪ From 5°N to 5°S and from 170°W to 120°W

▪ An El Niño (La Niña) event is identified if the 5-month running-

average of the NINO3.4 index exceeds +0.4°C (-0.4°C) for at 

least 6 consecutive months.



Fourier analysis of NINO3.4 index (monthly resolution)
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Are the peaks “significant”?

Surrogates: 100 stochastic 

AR(1) processes with same  

autocorrelation at lag 1 and 

variance as NINO3.4

significant peaks at 3-4 years

Source: G. Tirabassi PhD thesis

http://www.fisica.edu.uy/~cris/Pub/tirabassi_thesis_2015.pdf


▪ Real observed time series. 

▪ Generate an ensemble of 

“surrogate” time series that are 

both “similar“ to the original and 

also consistent with the specific 

null hypothesis (NH) that we 

want to test. 

▪ Measure an statistical property: 

“d” in the original series and “s(i)” 

in the ensemble time series.

▪ Is “d” consistent with the 

distribution of “s(i)” values? 

− No! we reject the NH.

− Yes! we “fail to reject” the NH. 

The method of surrogate data

Taken from 

M. Small, Applied Nonlinear Time 

Series Analysis (World Scientific, 

2005)



Source: wikipedia

p value
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The p-value only measures the compatibility of an observation 

with a hypothesis, not the truth of the hypothesis.

Altman, N. and Krzywinski, M. Interpreting P values. Nature Methods 14, 213 (2017).



Example
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▪ Red: MI and DI values computed from original data

▪ Histogram: MI and DI values computed from surrogates

▪ Think lines: significance thresholds (mean +/- 3 )

▪ In both cases the NH (no MI, no DI) is rejected.



G. Lancaster et al, “Surrogate data for hypothesis testing of 

physical systems”, Physics Reports 748 (2018) 1–60

Surrogate test for nonlinearity

21

A: Rossler with 

a = 0.165, b = 0.2 

and c = 10

B: High-order (linear) autoregressive process

Proper surrogates detect nonlinearity in 

A (reject NH) but not in B (fail to reject NH)



▪ Mean (expected value of X): =)

▪ Variance: 2 =Var (X) = E[(X-)2]

▪ Skewness: “measures” the asymmetry of the distribution

▪ Kurtosis: measures the "tailedness“ of the distribution. For a 

normal distribution K=3.

▪ Coefficient of variation: normalized measure of the width of 

the distribution.          Cv =  / ||

How to characterize the 

distribution of data values? 
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S = E[Z3]

K = E[Z4]



Long tailed distribution? Outliers?

23

Bonatto et al. PRL 107, 053901 (2011)



Comparison of probability distributions

24

A. Witt and B. D. Malamud, Surv Geophys (2013) 34:541–651



25

A. Witt and B. D. Malamud, Surv Geophys (2013) 34:541–651



“Dragon kings”: extreme outliers

26

Hugo L. D. de S. Cavalcante et al PRL 111, 198701 (2013)



▪ How to “bin” data (linear vs. logarithmic bins, how to chose the 

size of the bins)

▪ Number of data points in each bin (minimum average 10)

▪ How to fit the distribution (assuming a statistical model, the 

maximum likelihood estimator selects the parameter values 

which give the observed data the largest probability).

▪ Is the fit appropriated for the data? Many goodness of fit tests.

Challenges in the analysis of the distribution of data values
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Can different regimes be identified? With what reliability?
Time

Low current (noise?)

High current (chaos?)

Example: intensity emitted by a diode laser with feedback, 

as the pump current increases

Intermediate: spikes

Time

Time



Standard deviation of the intensity time series, σ, 

recorded using three different sampling rates

29C. Quintero-Quiroz et al, Scientific Reports (2016)

Laser pump current, normalized to the threshold value



http://www.nature.com/articles/srep37510
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▪ If the skewness and 

kurtosis of the distribution 

of values are  “consistent” 

with a Gaussian → noise

▪ Else, if  increases with the 

pump current →  spikes 

▪ Else → chaos

Classification criteria

Panozzo et al, Chaos 27, 114315 (2017)

spikes

noise

chaos

I = {i1, i2, … iN} laser “raw” intensity recorded for 

different pump currents and feedback strengths

http://aip.scitation.org/doi/abs/10.1063/1.4986441?ai=1gvoi&mi=3ricys&af=R


Threshold crossing ``events’’

Ti = ti+1 - tiinter-spike-intervals (ISIs):

▪ Problems:

‒ How to select 

the threshold?

‒ Threshold 

dependent 

results?

From time series to sequence of events

“Features” that 

persist for a 

wide range of 

thresholds are 

"true" features.



Example: by counting the number of times 

the laser intensity falls below a threshold

we can distinguish the three regimes.

32Panozzo et al, Chaos 27, 114315 (2017)

spikes

noise

chaos

-1.5

http://aip.scitation.org/doi/abs/10.1063/1.4986441?ai=1gvoi&mi=3ricys&af=R


Stochastic and coherence 

resonances



Bistable system with sinusoidal forcing and noise

34

Varying ; D constant



Time

Varying D;  constant

D

Time

x(t)

Gammaitoni et al, Rev. Mod. Phys. 70, 223 (1998)



Quantification of stochastic resonance with spectral analysis
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▪ Phase-averaged power spectral 

density: average over many 

realizations of the noise and average 

over the input initial phase .

▪ Signal to noise ratio at 

SNR()=

Noise strength, D

Gammaitoni et al, Rev. Mod. Phys. 70, 223 (1998)



Quantification of stochastic resonance 

with the distribution of residence times

Gammaitoni et al, Rev. Mod. Phys. 70, 223 (1998)
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Strength of the nth peak: area under the peak

Number of 

switching 

times

D



▪ Fitz Hugh–Nagumo model (=0.01, a =1.05)

Coherence resonance
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Autocorrelation

Pikovsky and Kurths, Phys. Rev. Lett. 78, 775 (1997)

D



▪ Characteristic correlation time

▪ Coefficient of variation of inter-spike-interval distribution Cv=/

How to quantify coherence resonance?

38

c solid

Cv dashed 

Pikovsky and Kurths, Phys. Rev. Lett. 78, 775 (1997)



Locking
The frequency of an oscillator is 

controlled by an external signal



Experimental data: the laser pump current is 

modulated with a small-amplitude sinusoidal signal

40

Laser 

output

Input 

signal

fmod = 14 MHz                    30 MHz                        50 MHz

Tiana et al, Opt. Express 26, 323041 (2018)

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-26-7-9298&origin=search


How does the distribution of inter-spike intervals look like?

41
Tiana et al, arXiv:1806.08950v1 (2018)

https://arxiv.org/abs/1806.08950


Coefficient of variation of the ISI distribution Cv=/

How to quantify the degree of locking?

42

Laser current 

[mA]

increases the 

frequency of the 

“natural” spikes

Tiana et al, Opt. Express 26, 323041 (2018)

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-26-7-9298&origin=search


Chaos



Attractor reconstruction: “embed” the time series in a phase-space 

of dimension d using delay  coordinates

44

Adapted from U. Parlitz (Gottingen)

How to identify (and quantify) chaos in observed data? 

Observed time series S = {s(1), s(2), … s(t) … }



Reconstruction using delay coordinates
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A problem: how to chose the embedding parameters 

(lag , dimension d)

Bradley and Kantz, CHAOS 25, 097610 (2015)



▪  is chosen to maximize the spread of the data in phase 

space: the first zero of the autocorrelation function (or where 

|C()| is minimum)

▪ d is often estimated with the false nearest neighbors 

technique that examines how close points in phase space 

remain close as the dimension is increased. 

▪ Points that do not remain close are ‘false’ neighbors.

▪ The number of false neighbors decreases as the embedding 

dimension is increased. 

▪ The first dimension for which the number of false neighbors 

decreases below a threshold provides the estimated d.

How to chose the lag  and the dimension d

46

After reconstructing the attractor, we can characterize the 

TS by the fractal dimension and the Lyapunov exponent.



▪ A stable fixed point has negative s (since perturbations 

in any direction die out)

▪ An attracting limit cycle has one zero  and negative s

▪ A chaotic attractor as at least one positive .

47

Adapted from U. Parlitz

Lyapunov exponents: measure how 

fast neighboring trajectories diverge



▪ Initial distance

▪ Final distance

▪ Local exponential grow

▪ The rate of grow is averaged over the attractor, 

which gives max

Steps to compute the maximum LE

48

A very popular method for detecting 

chaos in experimental time series.



A word of warning!
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▪ The rate of grow depends on the direction in the phase 

space.

▪ The algorithm returns the value in the direction with fastest 

expansion.

▪ Therefore, the algorithm always returns a positive number!

▪ This is a problem when computing the LE of noisy data.

▪ First we need to test nonlinearity in the time series.

Further reading: 
− F. Mitschke and M. Damming, Chaos vs. noise in 

experimental data, Int. J. Bif. Chaos 3, 693 (1993)

− A. Pikovsky and A. Politi, Lyapunov Exponents (Cambridge 

University Press, 2016)



▪ Another very popular method for detecting chaos 

in real-world data.

Grassberger-Procaccia correlation dimension algorithm
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Further reading:

P. Grassberger and I. Procaccia, "Measuring the Strangeness of Strange Attractors". 

Physica D vol. 9, pp.189, 1983.

L. S. Liebovitch and T. Toth, “A fast algorithm to determine fractal dimensions by 

box counting,”  Physics Letters A, vol. 141, pp. 386, 1989.

▪ Fractal dimension (box counting dimension):

▪ Problem: for time-series analysis, no distinction between 

frequent and unfrequently visited boxes.

▪ An alternative: the 

correlation dimension.

g is the number of pairs of 

points with distance 

between them < .



Symbolic methods to identify patterns 

and structure in time series 
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A. Longtin et al PRL (1991)

Experimental data when the laser 

current is modulated with a 

sinusoidal signal of period T0.

2T0 4T0

A. Aragoneses et al

Optics Express (2014)
52

Are there statistical similarities between neuronal 

spikes and optical spikes?

http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-22-4-4705&seq=0&origin=search
http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-22-4-4705&seq=0&origin=search


A. Longtin

Int. J. Bif. Chaos (1993)

Laser ISIsNeuronal ISIs

M. Giudici et al PRE (1997)

A. Aragoneses et al

Optics Express (2014)

Return maps of inter-spike-intervals

Ti

Ti+1

53

HOW TO INDENTIFY TEMPORAL ORDER? 

MORE/LESS EXPRESSED PATTERNS?

http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-22-4-4705&seq=0&origin=search
http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-22-4-4705&seq=0&origin=search


▪ The time series {x1, x2, x3, …} is transformed (using an 

appropriated rule) into a sequence of symbols {s1, s2, …} 

▪ taken from an “alphabet” of possible symbols {a1, a2, …}. 

▪ Then consider “blocks” of D symbols (“patterns” or “words”).

▪ All the possible words form the “dictionary”.

▪ Then analyze the “language” of the sequence of words

- the probabilities of the words,

- missing/forbidden words, 

- transition probabilities, 

- information measures (entropy, etc).

Symbolic analysis

54



▪ if xi > xth  si = 0; else si =1

transforms a time series into a sequence of 0s and 1s, e.g., 

{011100001011111…}

▪ Considering “blocks” of D letters gives the sequence of 

words. Example, with D=3:

{011   100    001    011   111 …}

▪ The number of words (patterns) grows as 2D

▪ More thresholds allow for more letters in the “alphabet” 

(and more words in the dictionary). Example: 

if xi > xth1  si = 0; 

else if xi < xth2  si =2; 

else (xth2 <x i < xth1)  si =1. 

Threshold transformation: “partition” of the phase space

55



▪ Ordinal rule: if xi > xi-1  si = 0; else si =1

also transforms a time-series into a sequence of 0s and 1s 

without using a threshold

▪ “words” of D letters are formed by considering the order 

relation between sets of D values {…xi, xi+1, xi+2, …}. 

D=3

Alternative rule

56
Bandt and Pompe PRL 88, 174102 (2002)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.174102


021 012

Relative order of three consecutive intervals

{…Ii, Ii+1, Ii+2, …}

Example: (5, 1, 7) gives “102” because 1 < 5 < 7

Ordinal 

probabilities

1 2 3 4 5 6

Ii = ti+1 - ti



The number of ordinal patterns increases as D! 

▪ A problem for short datasets

▪ How to select optimal D? 

it depends on:

─ The length of the data

─ The length of the correlations



Threshold transformation: 

if xi > xth  si = 0; else si =1

▪ Advantage: keeps information 

about the magnitude of the 

values.

▪ Drawback: how to select an 

adequate threshold (“partition” 

of the phase space).

▪ 2D

Ordinal transformation: 

if xi > xi-1  si = 0; else si =1

▪ Advantage: no need of 

threshold; keeps information 

about the temporal order in 

the sequence of values

▪ Drawback: no information 

about the actual data values

▪ D!

59

Comparison
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Logistic map
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(class and homework)

Ordinal analysis yields complementary information

Xi

Map parameter Map parameter, r

Pattern 210 is always forbidden; 

pattern 012 is more frequently 

expressed as r increases
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Software
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Python and Matlab codes for computing 

the ordinal pattern index are available 

here: U. Parlitz et al. Computers in 

Biology and Medicine 42, 319 (2012) 

World length (wl): 4

Lag = 3 (skip 2 points)

Result: 

indcs=3

http://www.fisica.edu.uy/~cris/Parlitz_2012.pdf


▪ Null hypothesis: 

pi = p = 1/D! for all i = 1 … D!

▪ If at least one probability is not in the 

interval p  3 with

and N the number of ordinal patterns:

We reject the NH with 99.74% 

confidence level.

▪ Else

We fail to reject the NH with 

99.74% confidence level.

Are the D! ordinal patterns equally probable?

63

Npp /)1( −=



▪ Gaussian white noise and 

subthreshold signal: a0 and T such 

that spikes are noise-induced.

▪ Time series with M=100,000 ISIs 

simulated (a=1.05, =0.01). 

▪ Gray region: significance analysis 

with 3 confidence level.

J. M. Aparicio-Reinoso et al PRE 94, 032218 (2016)

Example: spikes generated by the FitzHugh-Nagumo model

T=20

D=0.015

http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032218


Data requirements: influence of the number of patterns

65
J. M. Aparicio-Reinoso et al PRE 94, 032218 (2016)

With external signal

Without external signal

http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032218


Side note: comparison with the laser spikes

Modulation amplitudeModulation amplitude
A. Aragoneses et al, Sci. Rep. 4, 4696 (2014)J. M. Aparicio-Reinoso et al PRE 94, 032218 (2016)

http://www.nature.com/srep/2014/140415/srep04696/full/srep04696.html
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032218


Detecting longer correlations



▪ Example: climatological data (monthly sampled)

− Consecutive months:

− Consecutive years:

▪ Varying  = varying temporal resolution (sampling time)

Using longer words

)...]24( ),...12( ),...([... ++ txtxtx iii

)...]2( ),1( ),([... ++ txtxtx iii

▪ Solution: a lag  allows considering long time-scales without 

having to use words of many letters

68

)...]5( ),4(),3(),2(),1( ),( [... +++++ txtxtxtxtxtx

),...]4(),2(),( [... ++ txtxtx

▪ But long time series will be required to estimate the probabilities 

of the fast growing number of words in the dictionary (D!). 



Ordinal patterns can be defined using a lag time between 

the data points (varying the effective “sampling time”)

Example: el Niño index, monthly sampled
‒ Green

triangles: 

intra-

seasonal 

pattern, 

‒ blue

squares: 

intra-annual 

pattern 

‒ red circles: 

inter-annual 

pattern



Example of application of ordinal 

analysis to ECG-signals

70

Time series of inter-beat intervals

congestive 

heart failure 

healthy 

subject



Classifying ECG-signals according 

to the frequency of words 

71

(the probabilities are normalized with respect to the 

smallest and the largest value occurring in the data set)

U. Parlitz et al. Computers in Biology and Medicine 42, 319 (2012) 

http://www.fisica.edu.uy/~cris/Parlitz_2012.pdf


▪ Deterministic systems (such as the logistic map) can 

have forbidden patterns, while stochastic systems 

have missing patterns (unobserved patterns due to 

the finite length of the time series).

Forbidden or missing patterns?

72

▪ Number of missing 
D=3 patterns found 
in 1000 time series 
generated with the 
logistic map (r=4), as 
a function of the 
length of the series.

M. Zanin et al, Entropy 14, 1553 (2012)

210



▪ It can provide a way to quantify the degree of stochasticity.

Can this be useful for distinguishing noise from chaos?

73

Less stochastic

J. Tiana-Alsina et al, Phil. Trans. Royal Soc. A 368, 367 (2010)

#
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is
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▪ Example: 

experimental data is 

transformed into a 

sequence of 0s and 

1s, the patterns are 

formed by 8 

symbols; the 

number of possible 

patterns is 28 = 256.



Ordinal analysis identifies the onset of different dynamical 

regimes, but fails to distinguish “noise” and “chaos”

C. Quintero-Quiroz et al, Scientific Reports (2016)

A probability value in the gray region is consistent 

with p= 1/6  0.17 with 99.7% confidence level.

0.14

0.17

0.24

Laser pump current, normalized to the threshold value

http://www.nature.com/articles/srep37510


Another way to “classify” the laser intensity time 

series into noise, spikes or chaos

75Panozzo et al, Chaos 27, 114315 (2017)

spikes

noise

chaos

P(210)

210

Gray region: P(210) is consistent with 1/6 with 3 confidence level. 

http://aip.scitation.org/doi/abs/10.1063/1.4986441?ai=1gvoi&mi=3ricys&af=R


Another example of application 

of ordinal analysis: 

prediction of  extremes



Extreme events in nature 

Optical chaos: provides the 

opportunity to 

▪ Advance our 

understanding of the 

mechanisms that generate 

extreme fluctuations

▪ advance predictability.



Parameters:

▪ Injection ratio

▪ Frequency detuning (controlled 

via the pump current)

Rogue wave:  pulse above 

<A> + 6-8 

Intensity time series

PDF

“Deterministic” optical rogue waves

C. Bonatto et al, Phys. Rev. Lett. 107, 053901 (2011)

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.107.053901


RW predictability

4

J. Zamora-Munt et al, PRA 87, 035802 (2013)

Experiments

Superposition of 500 TS 

at the RW peak

8

Deterministic simulations

Superposition of 50 time-series at the RW peak

 Well-defined 

oscillation pattern 

anticipates extreme 

pulses.

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.035802


Ordinal analysis to detect the “pattern” that 

tends to precede the extreme pulses 

▪ Consider the sequence of intensity peak heights (red dots):

{…Ii, Ii+1, Ii+2, …}

We calculate the probability of the pattern that occurs before 

each high pulse:

If Ii > TH, we analyze the pattern defined by (Ii-3, Ii-2, Ii-1)

▪ Possible order relations of 

three consecutive values:

201



Results: deterministic simulations

Black lines: 

99% confidence 

pi=1/6  i

▪ P(201)=1 if TH >6 

N. Martinez Alvarez et al. Eur. Phys. J. Spec. Top. 226, 1971 (2017)

▪ Problem: P(201)0

if TH <6 (pattern 

201 also 

anticipates some 

small pulses) 

false alarms (false 

positives)

http://rdcu.be/txqL


▪ Two different modulation frequencies

Including, in the simulations, noise and a 

small modulation of a parameter

In the first case: 210 is a “good” warning.

“early warning pattern” varies with parameters and might not exist.



Analysis of experimental data

Way to improve the 

“early warning”:

▪ Filter noise

▪ Longer patterns

{…Ii, Ii+1, Ii+2, Ii+3, …}



▪ Estimate the function

A well-known prediction tool

84

Source: Pablo Amil

▪ Main challenges: short datasets and/or high dimensional data.

▪ Standard approach: neural networks. 

▪ New development: “reservoir computing”.

▪ Read more: 
− S. Birkholz et al., “Predictability of Rogue Events”, PRL 114, 213901 (2015)

− J. Pathak et al, “Model-Free Prediction of Large Spatiotemporally Chaotic 

Systems from Data: A Reservoir Computing Approach”, 

PRL 120, 024102 (2018)



How to quantify unpredictability 

and complexity?



▪ The time-series is described by a set of probabilities

▪ Shannon entropy:

▪ Interpretation: “quantity of surprise one should feel upon 

reading the result of a measurement” 
K. Hlavackova-Schindler et al, Physics Reports 441 (2007)

▪ Simple example: a random variable takes values 0 or 1 with 

probabilities: p(0) = p, p(1) = 1 − p.

▪ H = −p log2(p) − (1 − p) log2(1 − p).

 p=0.5: Maximum unpredictability.

Information measure: 

Shannon entropy
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ii ppH 2log

1
1

=
=
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ip
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1

p

H
Shannon entropy computed from ordinal 

probabilities: Permutation Entropy



Permutation entropy and 

Lyapunov exponent

Bandt and Pompe

Phys. Rev. Lett.  2002

87

Entropy per symbol:

▪ x(i+1)=r x(i)[1-x(i)] 

Robust to noise

Entropy:  measures unpredictability or disorder. 

How to quantify Complexity?



H = 0

C = 0

H ≠ 0

C ≠ 0

H = 1

C = 0 

Order DisorderChaos

We would like to find a quantity “C” that measures complexity, 

as the entropy, “H”, measures unpredictability, and, for low-

dimensional systems, the Lyapunov exponent measures chaos.

Source: O. A. Rosso



Feldman, McTague and Crutchfield, Chaos 2008

“A useful complexity measure needs to do more

than satisfy the boundary conditions of vanishing

in the high- and low-entropy limits.”

“Maximum complexity occurs in the region

between the system’s perfectly ordered state

and the perfectly disordered one.”
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Information measures

▪ Assuming that we know the set of probabilities P=[pi, i=1,Nbin] 

that characterizes a time series, several information measures 

have been proposed, a few popular ones are:

Shannon entropy

Tsallis entropy

Renyi entropy
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where                    and Pe is the equilibrium probability 

distribution (that maximizes the information measure).

Example: if I[P] = Shannon entropy

then Pe = [pi=1/Nbin for i=1,Nbin]

and Imax = ln(Nbin)

][max ePII =

1][0  PH

Normalization



Measures the “distance“ from P to the equilibrium 

distribution, Pe

where Qo is a normalization constant such that 1][0  PQ

 ePPDQPQ ,][ 0=

Disequilibrium Q
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Distance between two probability distributions P and Pe

Read more: S-H Cha: Comprehensive Survey on Distance/Similarity Measures 

between Probability Density Functions,  Int. J of. Math. Models and Meth. 1, 300 (2007)

Euclidean

Kullback

Jensen divergence



A family of complexity measures 

can be defined as:

where

A = S, T, R (Shannon, Tsallis, Renyi)

B = E, K, J (Euclidean, Kullback, Jensen)

][][][ PQPHPC BA =

][][][ PQPHPC JSMPR =

][][][ PQPHPC ESLMC = Lopez-Ruiz, Mancini & Calbet, Phys. Lett. A (1995).

Anteneodo & Plastino, Phys. Lett. A (1996).

Martín, Plastino & Rosso, Phys. Lett. A (2003).

Statistical complexity measure C 



The complexity of the Logistic Map

95

x(i+1)=r x(i)[1-x(i)] 

Martín, Plastino, & Rosso, Physica A 2006

Euclidian 

distance

Jensen 

distance

Map parameter

Map parameter



The (entropy, complexity) plane: a useful 

tool to distinguish noise from chaos

96

O. A. Rosso et al, Phys. Rev. Lett. 99, 154102 (2007)



Many complexity measures have been proposed

97

Further reading: L. Tang et al, “Complexity testing techniques for time series data: A 

comprehensive literature review”, Chaos, Solitons and Fractals 81 (2015) 117–135 



▪ The complexity of an object is a measure of the 

computability resources needed to specify the object.

Kolmogorov complexity

Example: Let’s consider 2 strings of 32 letters:

abababababababababababababababab

4c1j5b2p0cv4w1x8rx2y39umgw5q85s7 

▪ The first string has a short description: “ab 16 times”.

▪ The second has no obvious description: complex or random? 

▪ The Lempel & Zip complexity is an estimation of the 

Kolmogorov complexity.



Lempel & Zip complexity of 

the Logistic Map

99Kaspar and Schuster, Phys Rev. A 1987



▪ How to quantify 

- the degree of unpredictability of Surface Air Temperature 

(SAT) anomaly, and 

- the degree of nonlinear response of SAT to solar forcing?

▪ Proposed measures

- Shannon entropy of SAT anomaly distribution of values (no 

symbols)

- Distance from SAT to insolation (incoming solar radiation)

Application to climate data

100



▪ Monthly mean SAT from two reanalysis (NCEP CDAS116 

and ERA Interim17). The spatial resolution is 2.5°/1.5° and 

cover the time-period [1949–2015]/[1980–2014] respectively. 

− NCEP CDAS1: N =10224 time series of length L = 792

− ERA Interim: N = 28562 and L = 408.

▪ Freely available.

▪ Reanalysis = run a sophisticated model of general 

atmospheric circulation and feed it with the available 

experimental data, in the different points of the Earth, at their 

corresponding times (data assimilation). 

▪ This restricts the solution of the model to one as close to 

reality as possible in regions where data is available, and to 

a solution physically “plausible” elsewhere.

Data

101



Raw SAT, climatology and insolation

102

Climatology:

Monthly data, 

Y number of years



Nonlinear response: distance between climatology and 

insolation

103

di  when i minimizes didi when i = 0

x (insolation) and y (climatology) are both normalized to =0 and =1

i values (months)

F. Arizmendi, M. Barreiro and C. Masoller, “Identifying large-scale patterns

of unpredictability and response to insolation in atmospheric data”, 

Sci. Rep. 7, 45676 (2017).

http://rdcu.be/qwUE
http://rdcu.be/qwUE


Unpredictability of SAT anomaly

104

Shannon Entropy: SAT anomaly is normalized to to =0 and =1

NCEP CDAS1 ERA Interim

F. Arizmendi, M. Barreiro and C. Masoller, Sci. Rep. 7, 45676 (2017)

Differences are due to the presence of extreme values 

in one re-analysis but not in the other.

http://rdcu.be/qwUE


Mapping a time series into 

a network



▪ A graph: a set of 

“nodes” connected 

by a set of “links”

▪ Nodes and links can 

be weighted or 

unweighted

▪ Links can be 

directed or 

undirected

▪ More in part 3 

(multivariate time 

series analysis)

What is a network?



We use symbolic patterns as the nodes of the network. 

And the links? Defined as the transition probability  → 

Adapted from M. Small (The University of Western Australia)

▪ In each node i: 

j wij=1

▪ Weigh of node i: the 

probability of pattern i

(i pi=1)

Weighted and 

directed network



Network-based diagnostic tools

• Entropy computed from node weights (permutation entropy)

• Average node entropy (entropy of the link weights)

• Asymmetry coefficient: normalized difference of transition 

probabilities, P(‘01’→ ‘10’) - P(‘10’→ ’01’), etc.

−= iip pps log

(0 in a fully symmetric network; 

1 in a fully directed network)

ijiji wws −=  log



A first test with the 

Logistic map

D=4

Detects the merging 

of four branches, not 

detected by the 

Lyapunov exponent. 

C. Masoller et al, NJP (2015)

Sp = PE

Sn=S(TPs)

Lyapunov

exponent

Map parameter

Slinks

ac

http://iopscience.iop.org/1367-2630/17/2/023068/pdf/1367-2630_17_2_023068.pdf


Apply the ordinal network method 

to detect an early warning signal 

of a critical transition

As the laser current increases

Time

Control parameter 

(laser current)

I



Approaching a “tipping point”

111

Source: E. Hernandez-Garcia (IFISC)

Scheffer et al. Science 338, 344 (2012)



▪ Approach to a bifurcation point → eigenvalue with 0 real part

→ long recovery time of perturbations

▪ Critical Slowing Down: increase of autocorrelation and variance

Early warning indicators



Apply the ordinal network method to laser data

▪ Two sets of experiments: intensity time series were recorded

‒ keeping constant the laser current.

‒ while increasing the laser current.

▪ We analyzed the polarization that turns on / turns off.

Is it possible to anticipate the switching?

No if the switching is fully stochastic.

As the laser current increases

Time

Intensity @ constant current 

Time



Early warning

Deterministic mechanisms 

must be involved.

First set of experiments (the current is kept constant): 

despite of the stochasticity of the time-series, the node 

entropy “anticipates” the switching

C. Masoller et al, NJP (2015)

Laser current

I

Laser current

I

Laser current

Node 

entropy 

sn

(D=3)

No 

warning

L=1000

100 windows

http://iopscience.iop.org/1367-2630/17/2/023068/pdf/1367-2630_17_2_023068.pdf


The warning is robust with respect to the length 

of the pattern D and the length of the window L

Node 

entropy

50001000L=500

D=3

Laser current

Laser current

L=1000

D=2 D=3 D=4

Node 

entropy

C. Masoller et al, NJP (2015)

http://iopscience.iop.org/1367-2630/17/2/023068/pdf/1367-2630_17_2_023068.pdf


In the second set of experiments (current increases 

linearly in time): an early warning is also detected

Node 

entropy

Time

With slightly 

different 

experimental 

conditions: no 

switching.

C. Masoller et al, NJP (2015)

L=500, D=3

1000 time series

Time

http://iopscience.iop.org/1367-2630/17/2/023068/pdf/1367-2630_17_2_023068.pdf


Second application of the ordinal network method: 

distinguishing eyes closed and eyes open brain states

Analysis of two EEG datasets

BitBrain PhysioNet



Eye closed Eye open

▪ Symbolic analysis is applied to the raw data; similar 

results were found with filtered data using independent 

component analysis.



“Randomization”: the entropies increase and the 

asymmetry coefficient decreases 

Time window = 1 s

(160 data points)

C. Quintero-Quiroz et al, “Differentiating resting brain states using ordinal 

symbolic analysis”, Chaos 28, 106307 (2018).

https://arxiv.org/abs/1805.03933


Another way to represent a time series as a 

network: the horizontal visibility graph (HVG)

Luque et al PRE (2009); Gomez Ravetti et al, PLoS ONE (2014)

 Unweighted and undirected graph

Rule: data points i and j are connected if there is “visibility” 

between them

i

Xi

Parameter free!



Consider the following time series:

Exercise

121

How many links does each data point have?



Example: the intensity emitted by a fiber laser

How to characterize the HV graph? 

Low   → High pump power

Transition 

“Laminar” → “Turbulent” regimes



The degree distribution: usual way to characterize a graph

Strogatz, Nature 2001

Regular
Random Scale-free



▪ Exponential: P(k) = A exp (-k)

where

Uncorrelated noise  = c = ln (3/2)

Chaotic dynamics  < c

Correlated noise  > c

L. Lacasa and R. Toral, “Description of stochastic and chaotic series using 

visibility graphs”, Phys. Rev. E 2010.

▪ Universal feature?

▪ No. But the plane (Shannon Entropy, Fisher Information) seems 

to work in localizing chaos and noise in different regions.

Gomez-Ravetti et al, “Distinguishing Noise from Chaos: Objective versus 

Subjective Criteria Using Horizontal Visibility Graph”, PLoS ONE 2014

How is the degree distribution of the HV graph that 

represents a time-series?

124



Distinguishing noise and chaos

125

The entropy is normalized to the 

entropy of gaussian white noise.

Gomez-Ravetti et al, PLoS ONE 2014

Shannon entropy and Fisher information are computed from 

the degree distribution of the HV graph, P(k)



Sharp increase of the spectral 

width (number of excited modes)

Back to the transition to optical turbulence in a fiber laser

Sharp decrease of the most 

probable intensity value

E. G. Turitsyna et al Nat. Phot. 7, 783 (2013)



Surrogate

HVG or PE

“Thresholded” data

S

Different ways of calculating the entropy S uncover 

gradual or sharp Laminar → Turbulence transition

Aragoneses et al, PRL (2016)

“Raw” data

(the abrupt transition is robust with 

respect to the selection of the threshold)

HVG

PE

S

Time

2

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.033902


The “usual” entropy (from the distribution of all the 

intensity values) uncovers a different gradual transition

Aragoneses et al, PRL (2016)

I(t)

I=0

=1

0.8 W

1.0 W

0.9 W

0.95 W

Time

S(“raw” pdf)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.033902


Changing the sampling time  identifies ``hidden’’ time 

scales in the dynamics, undetected by correlation analysis

Below transition

at transition

above transition

Aragoneses et al, PRL (2016)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.033902


Space-time representation of 

a time series



The space-time representation of the intensity time series: 

a convenient way to visualize the dynamics

Color

scale: Ii
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Aragoneses et al, PRL (2016)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.033902


▪ Embed the time series (find the embedding dimension and lag)

▪ Construct a binary matrix: Aij=1 if xi and xj are “close”, else Aij=0

▪ Plot Aij

Recurrence plots: another way to “visualize” a time series

132

Further reading: R.V. Donner, M. Small, et al. “Recurrence-based time series analysis 

by means of complex network methods”, Int. J. Bif. Chaos 21, 1019 (2011).



▪ Investigate el Niño3.4 index (or a time-series of your own 

interest)
El Niño index (monthly resolution since 1870): 

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.anom.data

▪ Compute the ordinal probabilities and the permutation 

entropy for different values of D and .

▪ Compare the “raw data” permutation entropy and the 

“thresholded data” permutation entropy.

▪ Analyze the influence of the threshold.

▪ How does the space-time representation looks like? 

Class and homework
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https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.anom.data


Extracting phase and 

amplitude information



▪ (A) The original signal. (B) The instantaneous phase extracted 

using the Hilbert transform. (C) The instantaneous amplitude. 

▪ A = C cos(B).

Example: a sine wave with increasing amplitude and 

frequency

135

G. Lancaster et al, Physics Reports 748 (2018) 1–60



136

Rossler

Second example
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x

HT[x]

x

y=HT[x]

Third example

Surface air temperature (SAT)

▪ HT[sin(t)]=cos(t)

Zappala, Barreiro and Masoller, Entropy (2016)

http://www.mdpi.com/1099-4300/18/11/408/pdf


▪ For a real time series x(t) defines an analytic signal

Hilbert transform

138

A word of warning: 

Although formally a(t) and (t) can be defined for any x(t), 

they have a clear physical meaning only if x(t) is a 

narrow-band oscillatory signal: in that case, the a(t)

coincides with the envelope of x(t) and the instantaneous 

frequency, (t)=d/dt, coincides with the dominant 

frequency in the power spectrum.
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▪ Can we use the Hilbert amplitude, phase, frequency, to :

‒ Identify and quantify regional climate change?

‒ Investigate synchronization in climate data?

▪ Problem: climate time series are not narrow-band.

▪ Usual solution (e.g. brain signals): isolate a narrow 

frequency band.

▪ However, the Hilbert transform applied to Surface Air 

Temperature time series yields meaningful insights.

Application to climate data
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El Niño/La Niña-Southern Oscillation (ENSO)

Is the most important climate phenomena on the planet

▪ Occurs across the tropical Pacific Ocean  with  3-6 

years periodicity. 

▪ Variations in the surface temperature of the tropical 

eastern Pacific Ocean (warming: El Niño, cooling: 

La Niña) 

▪ Variations in the air surface pressure in the tropical 

western Pacific (the Southern Oscillation). 

▪ These two variations are coupled: 

• El Niño (ocean warming)  -- high air surface pressure,

• La Niña (ocean cooling)   -- low air surface pressure.
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Satellite imagery of sea surface temperatures shows the strong El Nino that helped 

make 1998 one of the hottest years on record (Image: National Oceanic and 

Atmospheric Administration, US).

January 1998: El Niño

How ocean surface temperature differed from average



Temperature anomalies during 

La Niña (November 2007)
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Hilbert phase dynamics: temporal evolution of the 

cosine of the phase

Typical year El Niño year La Niña year

http://www.fisica.edu.uy/~cris/videos/map_typical.mp4
http://www.fisica.edu.uy/~cris/videos/map_ElNino.mp4
http://www.fisica.edu.uy/~cris/videos/map_LaNinal.mp4


The data:

▪ Spatial resolution 2.50 x 2.50  10226 time series

▪ Daily resolution 1979 – 2016  13700 data points

Where does the data come from?

▪ European Centre for Medium-Range Weather Forecasts 

(ECMWF, ERA-Interim). 

▪ Freely available.

“Features” extracted from each SAT time series 

▪ Time averaged amplitude, a

▪ Time averaged frequency, 

▪ Standard deviations, a, 

Changes in Hilbert amplitude and frequency detect 

interdecadal variations in surface air temperature (SAT)



Relative decadal variations 

Relative variation is considered significant if: 

1979198820072016 −−
−= aaa

19792016
       

−



a

a

ssa

a
2. +


ssa

a
2. −


or

100 “block” surrogates 

D. A. Zappala, M. Barreiro and C. Masoller, “Quantifying changes in spatial

patterns of surface air temperature dynamics over several decades”, 

Earth Syst. Dynam. 9, 383 (2018)

https://www.earth-syst-dynam-discuss.net/esd-2017-79/
https://www.earth-syst-dynam-discuss.net/esd-2017-79/


Relative variation of average Hilbert amplitude uncovers 

regions where the seasonal cycle increased/decreased

▪ Decrease of precipitation: the solar radiation that is not 

used for evaporation is used to heat the ground.

▪ Melting of sea ice: during winter the air temperature is 

mitigated by the sea and tends to be more moderated.



o

D. A. Zappala et al., Earth Syst. Dynam. 9, 383 (2018)

https://www.earth-syst-dynam-discuss.net/esd-2017-79/


D. A. Zappala et al., Earth Syst. Dynam. 9, 383 (2018)

https://www.earth-syst-dynam-discuss.net/esd-2017-79/


Relative change of time-averaged Hilbert frequency 

consistent with a north shift and enlargement of the 

intertropical convergence zone (ITCZ)
First ten years

Last ten years

D. A. Zappala et al., Earth Syst. Dynam. 9, 383 (2018)

https://www.earth-syst-dynam-discuss.net/esd-2017-79/


Hilbert analysis combined 

with temporal averaging: 

another way to uncover 

temporal regularity in data



SAT → average in a time window → Hilbert

The colorcode shows the mean frequency (red fast, blue slow) 

Influence of pre-processing SAT time series by temporal 

averaging in a moving window: fast variability removed

No filter 1 month 3 months

How does the phase dynamics depend on the 

length of the averaging window?



Mean rotation period (in years)

We will investigate some geographical locations: regular (circle), 

quasi-regular (triangle), double period (square), irregular (plus), 

El Niño (cross), quasi-biennial oscillation (QBO, star)



Variation of mean rotation period with the smoothing length

152

▪ Regular, quasi-regular and double period sites: a plateau at 1 year is 

found when increasing the averaging window (sooner or latter)

▪ Irregular site: no plateau.

▪ In El Niño and QBO sites: plateau at 4 and 2.5 years respectively.

Can we understand the variation of T with  ?



Simple model: two sinusoidal oscillations (the annual 

cycle and a slower oscillation) and autoregressive noise

153

We generate synthetic data. We know the underlying equations 

and parameters and so can check the validity of our method.



Phase-date relation:

Regular site

154

→
Pre-filtering 

SAT time 

series in a 

moving 

window of 

=41 days



In other sites: with appropriate pre-processing (using a window 

length  in a “plateau”) we uncover hidden regularity 

155

→
=41 days

→
=101 days



But in irregular site no plateau

156

→
=101 days



Can we detect non-trivial underlying periodicities 

with Fourier analysis?

No. The position of the main peak in the Fourier spectrum does not change, 

or changes abruptly when increasing the length of the averaging window.



Classification of SAT dynamics using k-means clustering
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▪ Blue cluster: regions dominated by the seasonal cycle and large 

temperature variations

▪ Orange cluster: regions with fast dynamics that are dominated by the 

annual cycle only after smoothing with  > 20 days, which may reflect the 

importance of subseasonal variability

▪ Green cluster: regions of low temperature variability, whose spatial 

structure is closely related to the mean rainfall pattern

▪ Red cluster: relatively weak annual cycle and influenced by El Niño and 

the QBO and thus shows slow dynamics



▪ k-means clustering aims to partition n observations into k

clusters in which each observation belongs to the cluster with 

the nearest mean.

k-means clustering

159

▪ The goal is to minimize the 

within-cluster sum of squares

Steps 2 and 3 are 

repeated until 

convergence has 

been reached.

Source: Wikipedia

▪ NP-hard problem, many free and licensed algorithms available. 



And many more TS analysis 

methods
▪ Wavelets

▪ Detrended fluctuation analysis

▪ Sample entropy, approximate entropy

▪ Multifractality

▪ Topological data analysis

▪ Etc. etc.



There are MANY methods that return “features” that 

characterize time series.
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▪ How to compare different methods?

▪ How to identify similar time-series?

▪ How to identify similar methods?

‒ HCTSA: highly comparative time-series analysis

‒ From each TS extracts over 7700 features

B. D. Fulcher, N. S. Jones: Automatic time-series phenotyping 

using massive feature extraction. Cell Systems 5, 527  (2017).

https://arxiv.org/abs/1612.05296


162Matlab code: www.github.com/benfulcher/hctsa



What to do with more than 

7700 features?



Let’s take a step back. 

Assuming we have computed 120 ordinal probabilities. 

What we do next?

164

O. A. Rosso et al, Phys. Rev. Lett. 99, 154102 (2007)



▪ Many methods for reducing high-dimensional data to a 

small number of dimensions.

▪ Example:

Nonlinear dimensionality reduction (NLDR)
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Each image of the letter 'A‘ has 32x32 

pixels = vector of 1024 pixel values
NLDR reduces the data into just two 

dimensions (rotation and scale)

Source: 

Wikipedia

▪ A popular method: ISOMAP

▪ A linear method: Principal Component Analysis (PCA)



▪ Symbolic analysis, network representation, spatiotemporal 

representation, etc., are useful tools for investigating 

complex signals.

▪ Different techniques provide complementary information.

Take home messages

“…nonlinear time-series analysis has been used to great 

advantage on thousands of real and synthetic data sets from a 

wide variety of systems ranging from roulette wheels to lasers to 

the human heart. Even in cases where the data do not meet the 

mathematical or algorithmic requirements, the results of 

nonlinear time-series analysis can be helpful in understanding, 

characterizing, and predicting dynamical systems…”

Bradley and Kantz, CHAOS 25, 097610 (2015)
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