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 Introduction

− Historical development: from dynamical systems to complex systems

 Univariate analysis

− Methods to extract information from a time series. 

− Applications.

 Bivariate analysis

− Correlation, directionality and causality. 

− Applications.

 Multivariate analysis

‒ Many time series: complex networks. 

‒ Network characterization and analysis. 
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Cross-correlation of two time series X and Y of length N
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 -1  CX,Y  1

 CX,Y = CY,X

 The maximum of CX,Y() indicates the lag that renders 

the time series X and Y best aligned.

 Pearson coefficient:  = CX,Y (0)

the two time series are 

normalized to zero-mean 

=0 and unit variance, =1



Example: response of a bistable system to an aperiodic 

signal (stochastic resonance)
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Barbay et al, PRL 85, 4652 (2000)

Cross-correlation between 

input and output signal.



Example: cross-correlation of cosine of Hilbert phase of 

SAT at a reference point (*), and all other regions
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Cross-correlation analysis detects linear relationships only

6Source: wikipedia



Correlation is NOT causality
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An illustrative example: the number of sunspots and the number 

of the Republicans in the U.S. Senate in the years 1960-2006.

C=0.52

Interval 1960 to 1986 (biannual sampling, 14 points):

Is this significant?



The significance of a correlation value is usually checked by 

calculating the cross-correlation from an ensemble of signals 

(surrogates) with the same autocorrelation than the original 

time series but completely independent from each other.
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http://tylervigen.com/spurious-correlations

Surrogate test

G. Lancaster et al, “Surrogate data for 

hypothesis testing of physical systems”, 

Physics Reports 748 (2018) 1–60.

http://tylervigen.com/spurious-correlations


 MI (x,y) = MI (y,x)

 p(x,y) = p(x) p(y)  MI = 0, else MI >0

 MI can also be computed with a lag-time.

 MI can also be computed from symbolic probabilities 

(e.g., probabilities of ordinal patterns).

Nonlinear correlation measure based on information 

theory: the mutual Information
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MI values are systematically overestimated 

10
R. Steuer et al, Bioinformatics 18, suppl 2, S231 (2002).

Main 

problem: a 

reliable 

estimation of 

MI requires a 

large amount 

of data



Example: MI maps computed from SAT anomalies at a 

reference point located in El Niño, and all the other regions
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Ordinal analysis separates the times-scales of the interactions

Deza, Barreiro and Masoller, Eur. Phys. J. ST 222, 511 (2013)

http://www.fisica.edu.uy/~cris/Pub/epjst_deza_2013.pdf


Direction of interaction?



 CMI measures the amount of information shared 

between two time series i(t) and j(t), given the effect 

of a third time series, k(t), over j(t).

Conditional mutual information 

(CMI) and transfer entropy (TE)
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 Transfer entropy = CMI with the third time series, k(t), 

replaced by the past of i(t) or j(t).



 : time-scale of information transfer

 DI: net direction of information transfer

 DIij > 0 → i drives j.

Directionality index

A. Bahraminasab et al., PRL 100, 084101 (2008)

x → i

x → j
i  j ??

Application to cardiorespiratory data

measured from 20 healthy subjects: 

(a) TEs (dashed lines: surrogate data)

(b) D12 (1 = heart; 2 = respiration). 

D12 < 0 → respiration drives 

cardiac activity.

TEs were computed from ordinal 

probabilities and averaged over a short 

range of lags to decrease fluctuations.

Problem:



Application to climate data

DI computed from daily SAT anomalies, PDFs estimated from 

histograms of values.

MI and DI are both significant (>3, surrogates), =30 days.

MI
DI

J. I. Deza, M. Barreiro, and C. Masoller, “Assessing the direction of climate 

interactions by means of complex networks and information theoretic tools”, 

Chaos 25, 033105 (2015).

http://www.fisica.edu.uy/~cris/Pub/chaos_2015.pdf


Causality?



 A time series X is Granger causal to a time series Y (X→Y) 

if the information given by X allows for a more precise 

prediction of Y.

 Example: in the predator - prey system, information about 

variations in the predator population can reveal properties 

of the prey population.

Main idea
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 Model Y as a processes with memory forced by X with residual 

noise 

 Test the hypothesis b  0 against the null hypothesis b=0:

− Fit vectors a and b with a linear regression and compute 

the variance of the residual: 

− Repeat with b=0 and compute:

− Then calculate the Granger Causality Estimator

Granger causality: how to detect XY
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 If GCE>0 the information given by X allowed for a more 

precise prediction of Y.

 Problems: 

− how to select the dimension d? 

− how to test the statistical significance of the GCE value?

Granger Causality Estimator
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 Cross-correlation: detects linear interdependencies.

 Mutual information: detects nonlinear interdependencies. 

 The MI computed from the probabilities of ordinal 

patterns allows to select the time-scale of the analysis.

 The directionality index detects the net direction of the 

information flow.

 Granger causality can “disentangle” mutual interactions.

Summary
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 Introduction

− Historical development: from dynamical systems to complex systems

 Univariate analysis

− Methods to extract information from a time series. 

− Applications.

 Bivariate analysis

− Correlation, directionality and causality. 

− Applications.

 Multivariate analysis

‒ Many time series: complex networks. 

‒ Network characterization and analysis. 

Outline

21



 A graph: a set of 

“nodes” connected 

by a set of “links”.

 Nodes and links can 

be weighted or 

unweighted.

 Links can be 

directed or 

undirected.

What is a network?



Networks or graphs

Source: Strogatz

Nature 2001

The challenge in the context of time series analysis: to infer 

the underlying network structure from observed signals.



Connected components 

(“communities”)
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A graph with three connected components.

Source: Wikipedia



Using bivariate measures to 

infer interactions from data: 

“functional networks”



Brain functional network

Eguiluz et al, PRL 2005

Sij > Th

 Aij = 1, 

else Aij=0

Adjacency 

matrix



Graphical representation
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Thresholded

matrix = inferred 

(“functional”) 

network

Adjacency matrix Degree of a node: number of links

ki = j Aij



The degree distribution: usual way to characterize a graph

Strogatz, Nature 2001

Regular
Random Scale-free



The climate system as a set of “interacting oscillators”

22/10/2021 Masoller 29



Complex network representation of the climate system

Donges et al, Chaos 2015

Surface Air Temperature

Anomalies (solar cycle removed)

Back to the climate 

system: interpretation 

(currents, winds, etc.)

More than 

10000 

nodes 

(with 

different 

sizes).

Daily 

resolution: 

more than 

13000 data 

points in 

each TS
Sim. measure 

+ threshold



Brain network Climate network
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Area weighted 

connectivity 

(AWC):
weighted degree 

(nodes represent 

areas with 

different sizes) 



Three criteria are typically used: 

 A significance level is used (typically 5%) in 

order to omit connectivity values that can be 

expected by chance;

 We select an arbitrary value as threshold, such 

that it gives a certain pre-fixed number of links 

(or link density);

 We define the threshold as large as possible 

while guaranteeing that all nodes are connected 

(or a so-called “giant component” exists).

How to select the threshold ?
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C. M. van Wijk et al., “Comparing Brain Networks of Different Size and

Connectivity Density Using Graph Theory”, PLoS ONE 5, e13701 (2010)

Sij > Th  Aij = 1, 

else Aij=0
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Th 

M. Barreiro, et. al, Chaos 21, 013101 (2011)

How to select the threshold ? If Sij > Th  Aij = 1, 

else Aij=0

http://www.fisica.edu.uy/~cris/Pub/chaos_2011.pdf


Problems with thresholding
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 The number of connected components as a function of 

threshold reveals different  structures.

 But thresholding near the dotted lines indicates (inaccurately) 

that networks 1 and 2 have similar structures.

Giusti et al., J Comput Neurosci (2016) 41:1–14

Network 1

Network 2



Network characterization



 Adjacency matrix: Aij = 1 if i and j are connected, else Aij = 0.

 Degree of a node ki = j Aij

 Clustering coefficient: measures the fraction of a node’s 

neighbors that are neighbors also among themselves

Definitions (for unweighted and undirected graphs)
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Ri is the number of connected pairs 

in the set of neighbors of node i

 Assortativity: measures the tendency of a node 

with high/low degree to be connected to other 

nodes with high/low degree



 Mean (expected value of X): =)

 Variance: 2 =Var (X) = E[(X-)2]

 Skewness: “measures” the asymmetry of the distribution

 Kurtosis: measures the "tailedness“ of the distribution. For a 

normal distribution K=3.

How to characterize the degree distribution?  

37

S = E[Z3]

K = E[Z4]



Example of application: 

desertification transition 



Our goal: to develop reliable early-warning indicators 

Can we use “correlation networks” to detect the 

approach to a tipping point?



 w (in mm) is the soil water amount 

 B (in g/m2) is the vegetation biomass 

 Uncorrelated Gaussian white noise 

 R (rainfall) is the bifurcation parameter

Model

Shnerb et al. (2003), Guttal & Jayaprakash (2007), Dakos et al. (2011)



Saddle-node bifurcation

R<Rc: only desert-like solution (B=0)

Rc = 1.067 mm/day



Biomass time series

Biomass B when R=1.1 mm/day

100 m x 100 m = 104 grid cells

Simulation time 5 days in 500 time steps

Periodic boundary conditions  



Correlation Network

Statistical similarity 

measure: 

Pearson coef.= 

|zero-lag cross-

correlation|

Threshold: Th=0.2 keeps only 

significant correlations (p<0.05)

G. Tirabassi et al., Ecological Complexity (2014)

Sij > Th  Aij = 1, else Aij=0

http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf


‘‘Gaussianization’’ of the distributions of ai & ci as the 

tipping point is approached

clustering 

assortativity 

skewness kurtosis 



The ‘‘Gaussianisation’’ is quantified by the Kullback

distance to a Gaussian (Z) distribution

G. Tirabassi et al., Ecological Complexity 19, 148 (2014)

 Open issue: the 

“Gaussianisation” 

might be a model-

specific feature.

 How to precisely 

quantify changes of 

the network?

 We need a distance to 

compare graphs.

http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf


How to “infer” interactions 

from observed data?



 How to select the threshold?

 In “spatially embedded networks”, nearby nodes have the 

strongest links.

 How to keep weak-but-significant links?

 There are many statistical similarity measures to infer 

interactions from observations, i.e., to classify: 

− the interaction exists (is significant)

− the interaction does not exists (or is not significant)

A classification problem

47

Sij > Th  Aij = 1, else Aij=0



Lagged |cross correlation|: 

Observed time series in nodes i and j: ai (t),  aj (t),  t=1, …,T

(normalized =0, =1)

Goal: use a system with known connectivity to test the 

performance of statistical similarity measures

Statistical Similarity Measure:

Sij = max | CCij () |

= | CCij (ij) | ij in [0,max]

G. Tirabassi et al., “Inferring the connectivity of coupled oscillators from time-series 

statistical similarity analysis”, Sci. Rep. 5 10829 (2015).

We compare with the Mutual Information, computed from 

probabilities of “raw” values and from ordinal probabilities 

https://www.nature.com/articles/srep10829.pdf


Kuramoto oscillators in a random network

Phases () CC MI MIOP

Aij is a symmetric 

random matrix; 

N=12 time-series, each 

with 104 data points.

“Observable” Y=sin()

True positives False positives True positives False positives

Results of a 100 simulations with different oscillators’ frequencies, random 

matrices, noise realizations and initial conditions.

For each K, the threshold was varied to obtain optimal reconstruction.



Instantaneous frequencies (d/dt)

CC MI MIOP

Perfect network inference is possible! 

BUT 

• the number of oscillators is small (12), 

• the coupling is symmetric (  only 66 possible links) and

• the data sets are long (104 points)

G. Tirabassi et al, Sci. Rep. 5 10829 (2015) 

https://www.nature.com/articles/srep10829.pdf
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We also analyzed experimental data recorded from 12 chaotic 

Rössler electronic oscillators (symmetric and random coupling)

The Hilbert Transform 

was used to obtain 

phases from 

experimental data

for each coupling strength
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Results obtained with experimental data

Masoller 53

Observed 

variable (x) 

Hilbert phase 

Hilbert frequency

CC MI MIOP

‒ No perfect 

reconstruction

‒ No important 

difference 

among the 3 

methods & 3 

variables



Generalizations of complex 

network analysis



Network structures:

Multilayer, multiplex, bipartite, networks of 

networks and many others
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Limitations of complex 

network analysis



 Links represent interactions between pairs of nodes.

 Simplicial complexes represent interactions among 

several nodes.

Interactions are not limited to pairs of elements

57

Example

Giusti et al., J Comput Neurosci (2016) 41:1–14



 Multivariate analysis uncovers inter-relationships in datasets

 Different similarity measures are available for inferring the 

connectivity of a complex system from observations.

 Different measures can uncover different properties.

 Thresholding, hidden variables, hidden “nodes” can difficult 

or make impossible the inference of the network structure.

 Different sets of “communities” can be uncovered depending 

on the property that is analyzed. 

 Network science: many applications and challenges!

Summary
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