UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Escola Superior d'Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa

Nonlinear time series analysis Master degree in Industrial Engineering Master degree in Aeronautic Engineering Course 2020-2021

Bivariate and multivariate analysis

Prof. Cristina Masoller

Universitat Politècnica de Catalunya cristina.masoller@upc.edu www.fisica.edu.uy/~cris

Outline

- Introduction
- Historical development: from dynamical systems to complex systems
- Univariate analysis
- Methods to extract information from a time series.
- Applications.

- Bivariate analysis
- Correlation, directionality and causality.
- Applications.

- Multivariate analysis
- Many time series: complex networks.
- Network characterization and analysis.

Cross-correlation of two time series X and Y of length N

$$
C_{x y}(\tau)=\frac{1}{N-\tau} \sum_{k=1}^{N-\tau} x(k+\tau) y(k)
$$

the two time series are normalized to zero-mean
$\mu=0$ and unit variance, $\sigma=1$
$-1 \leq C_{X, Y} \leq 1$

- $C_{X, Y}=C_{Y, X}$
- The maximum of $\mathrm{C}_{\mathrm{X}, \mathrm{Y}}(\tau)$ indicates the lag that renders the time series X and Y best aligned.
- Pearson coefficient: $\rho=C_{X, Y}(0)$

Example: response of a bistable system to an aperiodic signal (stochastic resonance)

Example: cross-correlation of cosine of Hilbert phase of SAT at a reference point (*), and all other regions

Southern extratropics

El Niño

Cross-correlation analysis detects linear relationships only

Source: wikipedia

Correlation is NOT causality

An illustrative example: the number of sunspots and the number of the Republicans in the U.S. Senate in the years 1960-2006.

Interval 1960 to 1986 (biannual sampling, 14 points): $\mathrm{C}=0.52$ Is this significant?

Surrogate test

The significance of a correlation value is usually checked by calculating the cross-correlation from an ensemble of signals (surrogates) with the same autocorrelation than the original time series but completely independent from each other.

http://tylervigen.com/spurious-correlations

G. Lancaster et al, "Surrogate data for hypothesis testing of physical systems", Physics Reports 748 (2018) 1-60.

Nonlinear correlation measure based on information theory: the mutual Information

$$
M I=\sum_{i \in x} \sum_{j \in y} p(x, y) \log \left(\frac{p(x, y)}{p(x) p(y)}\right)
$$

- $M I(x, y)=M I(y, x)$
- $p(x, y)=p(x) p(y) \Rightarrow M I=0$, else $M I>0$
- MI can also be computed with a lag-time.
- MI can also be computed from symbolic probabilities (e.g., probabilities of ordinal patterns).

MI values are systematically overestimated

Fig. 1. Naive estimation of the mutual information for finite data. Left: The dataset consists of $N=300$ artificially generated independent and equidistributed random numbers. The probabilities are estimated using a histogram which divides each axis into $M_{x}=$ $M_{y}=10$ bins. Right: The histogram of the estimated mutual information $I(X, Y)$ obtained from 300 independent realizations.

Example: MI maps computed from SAT anomalies at a reference point located in El Niño, and all the other regions

Histograms

Interannual ordinal patterns

(a)

3 years ordinal patterns
3 months ordinal patterns
(c)
(b)

(d)

Ordinal analysis separates the times-scales of the interactions Deza, Barreiro and Masoller, Eur. Phys. J. ST 222, 511 (2013)'

Direction of interaction?

UNIVERSITAT POLITÈCNICA
DE CATALUNYA
BARCELONATECH
Campus d'Excel•lència Internacional

Conditional mutual information (CMI) and transfer entropy (TE)

- CMI measures the amount of information shared between two time series $i(t)$ and $j(t)$, given the effect of a third time series, $k(t)$, over $j(t)$.

$$
M_{I}(i ; j \mid k)=\sum_{m, n, l} p_{i j k}(m, n, l) \log \frac{p_{k}(l) p_{i j k}(m, n, l)}{p_{i k}(m, l) p_{j k}(n, l)}
$$

- Transfer entropy = CMI with the third time series, $k(t)$, replaced by the past of $i(t)$ or $j(t)$.

$$
\mathrm{TE}_{i j}(\tau) \equiv M_{I}\left(i ; j \mid i_{\tau}\right) \quad \mathrm{TE}_{j i}(\tau) \equiv M_{I}\left(j ; i \mid j_{\tau}\right)
$$

Directionality index

- τ : time-scale of information transfer
- DI: net direction of information transfer
- $D I_{i j}>0 \rightarrow i$ drives j.
$\mathrm{DI}_{i j}(\tau)=\frac{\mathrm{TE}_{i j}(\tau)-\mathrm{TE}_{j i}(\tau)}{\mathrm{TE}_{i j}(\tau)+\mathrm{TE}_{j i}(\tau)}$
Problem: $\begin{aligned} & x \rightarrow i \\ & x \rightarrow j\end{aligned} \quad i \leftrightarrow j ? ?$
Application to cardiorespiratory data measured from 20 healthy subjects: (a) TEs (dashed lines: surrogate data) (b) $\mathrm{D}_{12}(1=$ heart; $2=$ respiration $)$.
$D_{12}<0 \rightarrow$ respiration drives cardiac activity.

TEs were computed from ordinal probabilities and averaged over a short
 range of lags to decrease fluctuations.
A. Bahraminasab et al., PRL 100, 084101 (2008)

Application to climate data

DI computed from daily SAT anomalies, PDFs estimated from histograms of values.
MI and DI are both significant (>3 , surrogates), $\tau=30$ days.

$0 \quad 45 \mathrm{E}$ 90E 135E 180E 135W 90W 45W

J. I. Deza, M. Barreiro, and C. Masoller, "Assessing the direction of climate interactions by means of complex networks and information theoretic tools", Chaos 25, 033105 (2015).

Causality?

UNIVERSITAT POLITÈCNICA
DE CATALUNYA
BARCELONATECH
Campus d'Excel•lència Internacional

Main idea

- A time series X is Granger causal to a time series $Y(X \rightarrow Y)$ if the information given by X allows for a more precise prediction of Y.
- Example: in the predator - prey system, information about variations in the predator population can reveal properties of the prey population.

Granger causality: how to detect $\mathbf{X} \rightarrow \mathbf{Y}$

- Model Y as a processes with memory forced by X with residual noise ε

$$
Y_{t}=\sum_{k=1}^{D} a_{k} Y_{t-k}+\sum_{k=1}^{D} b_{k} X_{t-k}+\varepsilon_{t}
$$

- Test the hypothesis $b \neq 0$ against the null hypothesis $b=0$:
- Fit vectors a and b with a linear regression and compute the variance of the residual: $\sigma_{\text {coupled }}^{2}$
- Repeat with $b=0$ and compute: $\sigma_{\text {uncoupled }}^{2}$
- Then calculate the Granger Causality Estimator

Granger Causality Estimator

$$
G C E=\frac{\sigma_{\text {uncoupled }}^{2}-\sigma_{\text {coupled }}^{2}}{\sigma_{\text {uncoupled }}^{2}}
$$

- If GCE>0 the information given by X allowed for a more precise prediction of Y.
- Problems:
- how to select the dimension d ?
- how to test the statistical significance of the GCE value?

Summary

- Cross-correlation: detects linear interdependencies.
- Mutual information: detects nonlinear interdependencies.
- The MI computed from the probabilities of ordinal patterns allows to select the time-scale of the analysis.
- The directionality index detects the net direction of the information flow.
- Granger causality can "disentangle" mutual interactions.

Outline

- Introduction
- Historical development: from dynamical systems to complex systems
- Univariate analysis
- Methods to extract information from a time series.
- Applications.

- Bivariate analysis
- Correlation, directionality and causality.
- Applications.
- Multivariate analysis
- Many time series: complex networks.
- Network characterization and analysis.

What is a network?

- A graph: a set of "nodes" connected by a set of "links".
- Nodes and links can be weighted or unweighted.
- Links can be
 directed or undirected.

Networks or graphs

The challenge in the context of time series analysis: to infer the underlying network structure from observed signals.

Source: Strogatz Nature 2001

Connected components ("communities")

A graph with three connected components. Source: Wikipedia

Using bivariate measures to infer interactions from data: "functional networks"

Brain functional network

Graphical representation

Adjacency matrix

Thresholded matrix $=$ inferred ("functional") network

Degree of a node: number of links

$$
\mathrm{k}_{\mathrm{i}}=\Sigma_{\mathrm{j}} \mathrm{~A}_{\mathrm{ij}}
$$

The degree distribution: usual way to characterize a graph

Regular

Random

Scale-free
d

Strogatz, Nature 2001

The climate system as a set of "interacting oscillators"

Complex network representation of the climate system

Back to the climate system: interpretation (currents, winds, etc.)

Sim. measure

+ threshold

More than 10000 nodes
(with
different sizes).

Daily resolution: more than 13000 data points in each TS

Surface Air Temperature
Donges et al, Chaos 2015
Anomalies (solar cycle removed)

Brain network

Climate network

Area weighted connectivity (AWC):
weighted degree (nodes represent areas with different sizes)
$\mathrm{AWC}_{i}=\frac{\sum_{j}^{N} A_{i j} \cos \left(\lambda_{j}\right)}{\sum_{j}^{N} \cos \left(\lambda_{j}\right)}$

How to select the threshold?

$$
\begin{aligned}
& S_{\mathrm{ij}}>\mathrm{Th} \Rightarrow A_{\mathrm{ij}}=1, \\
& \text { else } A_{\mathrm{ij}}=0
\end{aligned}
$$

Three criteria are typically used:

- A significance level is used (typically 5\%) in order to omit connectivity values that can be expected by chance;
- We select an arbitrary value as threshold, such that it gives a certain pre-fixed number of links (or link density);
- We define the threshold as large as possible while guaranteeing that all nodes are connected (or a so-called "giant component" exists).

[^0]
How to select the threshold?

$$
\begin{aligned}
& \text { If } S_{\mathrm{ij}}>\mathrm{Th} \Rightarrow A_{\mathrm{ij}}=1, \\
& \text { else } \quad A_{\mathrm{ij}}=0
\end{aligned}
$$

Th \Rightarrow

M. Barreiro, et. al, Chaos 21, 013101 (2011)

Problems with thresholding

- The number of connected components as a function of threshold reveals different structures.
- But thresholding near the dotted lines indicates (inaccurately) that networks 1 and 2 have similar structures.

Giusti et al., J Comput Neurosci (2016) 41:1-14

Network characterization

Definitions (for unweighted and undirected graphs)

Adjacency matrix: $A_{i j}=1$ if i and j are connected, else $A_{i j}=0$.

- Degree of a node $k_{\mathrm{i}}=\Sigma_{\mathrm{j}} A_{i j}$

Clustering coefficient. measures the fraction of a node's neighbors that are neighbors also among themselves
$C_{i}=\frac{2 R_{i}}{k_{i}\left(k_{i}-1\right)}=\frac{1}{k_{i}\left(k_{i}-1\right)} \sum_{j=1}^{N} \sum_{l=1}^{N} \mathcal{A}_{i j} \mathcal{A}_{j \mathcal{L}} \mathcal{A}_{i i}$
R_{i} is the number of connected pairs in the set of neighbors of node i

- Assortativity: measures the tendency of a node with high/low degree to be connected to other
$a_{i} \equiv \frac{1}{k_{i}} \sum_{j=1}^{N} \mathcal{A}_{i j} k_{j}$ nodes with high/low degree

How to characterize the degree distribution?

- Mean (expected value of X): $\mu=\mathrm{E}[X]=\sum_{i=1}^{k} x_{i} p_{i}=x_{1} p_{1}+x_{2} p_{2}+\cdots+x_{k} p_{k}$
- Variance: $\sigma^{2}=\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]$
- Skewness: "measures" the asymmetry of the distribution

$$
Z=\frac{X-\mu}{\sigma} \quad S=\mathrm{E}\left[Z^{3}\right]
$$

Kurtosis: measures the "tailedness" of the distribution. For a normal distribution $K=3$.

$$
\dot{K}=\mathrm{E}\left[Z^{4}\right]
$$

Example of application: desertification transition

Our goal: to develop reliable early-warning indicators

Can we use "correlation networks" to detect the approach to a tipping point?

Model

$$
\begin{aligned}
& \frac{\partial w}{\partial t}=R-\frac{w}{\tau_{w}}-\Lambda w B+D \nabla^{2} w+\sigma_{w} w_{0} \xi^{w}(t), \\
& \frac{\partial B}{\partial t}=\rho B\left(\frac{w}{w_{0}}-\frac{B}{B_{c}}\right)-\mu \frac{B}{B+B_{O}}+D \nabla^{2} B+\sigma_{B} B_{0} \xi^{B}(t)
\end{aligned}
$$

- w (in mm) is the soil water amount
- B (in $\mathrm{g} / \mathrm{m}^{2}$) is the vegetation biomass
- Uncorrelated Gaussian white noise
- R (rainfall) is the bifurcation parameter

Shnerb et al. (2003), Guttal \& Jayaprakash (2007), Dakos et al. (2011)

Saddle-node bifurcation

$R<R_{c}$: only desert-like solution ($B=0$) $R_{c}=1.067 \mathrm{~mm} /$ day

Biomass time series

Biomass B when $R=1.1 \mathrm{~mm} /$ day

$100 \mathrm{~m} \times 100 \mathrm{~m}=10^{4}$ grid cells
Simulation time 5 days in 500 time steps
Periodic boundary conditions

Correlation Network

$$
S_{i j}>\mathrm{Th} \Rightarrow \mathrm{~A}_{\mathrm{ij}}=1, \text { else } \mathrm{A}_{\mathrm{ij}}=0
$$

Statistical similarity measure:
Pearson coef.=
Threshold: Th=0.2 keeps only significant correlations ($p<0.05$) |zero-lag crosscorrelation|

G. Tirabassi et al., Ecological Complexity (2014)

"Gaussianization" of the distributions of $a_{i} \& c_{i}$ as the tipping point is approached

skewness
clustering

kurtosis

assortativity

The "Gaussianisation" is quantified by the Kullback distance to a Gaussian (Z) distribution

G. Tirabassi et al., Ecological Complexity 19, 148 (2014)

How to "infer" interactions from observed data?

A classification problem

$$
S_{\mathrm{ij}}>\mathrm{Th} \Rightarrow A_{\mathrm{ij}}=1, \text { else } A_{\mathrm{ij}}=0
$$

- How to select the threshold?
- In "spatially embedded networks", nearby nodes have the strongest links.
- How to keep weak-but-significant links?
- There are many statistical similarity measures to infer interactions from observations, i.e., to classify:
- the interaction exists (is significant)
- the interaction does not exists (or is not significant)

Goal: use a system with known connectivity to test the performance of statistical similarity measures

Observed time series in nodes i and $j: a_{i}(t), a_{j}(t), t=1, \ldots, T$ (normalized $\mu=0, \sigma=1$)
Lagged |cross correlation|: $C C_{i j}(\tau)=\frac{1}{T-\tau_{\max }}\left|\sum_{t=0}^{T-\tau_{\max }} a_{i}(t) a_{j}(t+\tau)\right|$
Statistical Similarity Measure:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{ij}}=\max \left|\mathrm{CC}_{\mathrm{ij}}(\tau)\right| \\
&\left.=\mid \mathrm{CC}_{\mathrm{ij}} \tau_{\mathrm{ij}}\right) \mid \\
& \tau_{\mathrm{ij}} \text { in }\left[0, \tau_{\max }\right]
\end{aligned}
$$

We compare with the Mutual Information, computed from probabilities of "raw" values and from ordinal probabilities
G. Tirabassi et al., "Inferring the connectivity of coupled oscillators from time-series statistical similarity analysis", Sci. Rep. 510829 (2015).

Kuramoto oscillators in a random network

$$
\mathrm{d} \theta_{i}=\omega_{i} \mathrm{~d} t+\frac{K}{N} \sum_{j=1}^{N} A_{i j} \sin \left(\theta_{j}-\theta_{i}\right) \mathrm{d} t+D \mathrm{~d} W_{t}^{i}
$$

A_{ij} is a symmetric random matrix;
$N=12$ time-series, each with 10^{4} data points.

Results of a 100 simulations with different oscillators' frequencies, random matrices, noise realizations and initial conditions.
For each K, the threshold was varied to obtain optimal reconstruction.

Instantaneous frequencies (d θ / dt)

Perfect network inference is possible!

BUT

- the number of oscillators is small (12),
- the coupling is symmetric (\Rightarrow only 66 possible links) and
- the data sets are long (10^{4} points)

G. Tirabassi et al, Sci. Rep. 510829 (2015)

We also analyzed experimental data recorded from 12 chaotic Rössler electronic oscillators (symmetric and random coupling)

The Hilbert Transform was used to obtain phases from experimental data

- Kuramoto Oscillators'
Network

$$
\left(\begin{array}{l}
\theta_{i} \\
f_{i}=\dot{\theta}_{i} \\
Y_{i}=\sin \left(\theta_{i}\right)
\end{array}\right)
$$

- Rössler Oscillators' Network

Results obtained with experimental data

Observed variable (x)

Hilbert phase

- No perfect reconstruction

No important difference among the 3 methods \& 3 variables

Generalizations of complex network analysis

Network structures:

Multilayer, multiplex, bipartite, networks of networks and many others

Limitations of complex network analysis

Interactions are not limited to pairs of elements

- Links represent interactions between pairs of nodes.
- Simplicial complexes represent interactions among several nodes.

Example

matrix

complex
Giusti et al., J Comput Neurosci (2016) 41:1-14

Summary

- Multivariate analysis uncovers inter-relationships in datasets
- Different similarity measures are available for inferring the connectivity of a complex system from observations.
- Different measures can uncover different properties.
" Thresholding, hidden variables, hidden "nodes" can difficult or make impossible the inference of the network structure.
" Different sets of "communities" can be uncovered depending on the property that is analyzed.
- Network science: many applications and challenges!
cristina.masoller@upc.edu

Universitat Politecnica de Catalunya http://www.fisica.edu.uy/~cris/

[^0]: C. M. van Wijk et al., "Comparing Brain Networks of Different Size and Connectivity Density Using Graph Theory", PLoS ONE 5, e13701 (2010)

