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SCHEDULE OF THE COURSE

Block 1: 

Characterization of time 

series

Introduction

Univariate analysis

Bivariate analysis

Multivariate analysis

2Lecturers: C. Masoller, A. J. Pons

Block 2:

Data analysis tools 

Machine Learning 

techniques

Classification methods

Control, data assimilation 

and Kalman Filters

Block 0: Matlab



 Learn about the historic background and become familiar 

with current techniques (linear and nonlinear) for time series 

analysis.

 Became familiar with techniques for detecting statistical 

similarities and interdependencies in time series.

 Gain a broad knowledge of data-driven techniques for 

studying complex systems.

3

Learning objectives of the first module



Outline of the first block

 Introduction

 Univariate analysis

 Bivariate analysis

 Multivariate analysis
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Optical spikes Neuronal spikes

• Similar dynamical systems generate these signals?

• Ok, very different dynamical systems, but maybe 

similar statistical properties?

• Time series analysis can find “hidden similarities” in 

very different systems.

Time (s)

Time Series Analysis: what is it about? X = {x1, x2, … xN}



Nonlinear

dynamics

Data analysis

Applications
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In our lab we work on

‒ lasers

‒ neurons

‒ complex networks

‒ climate data

‒ biomedical data

Time series analysis is a highly inter-disciplinary research field 



Lasers, neurons, climate, complex systems?
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 Lasers allow us to study in a controlled way phenomena that 

occur in diverse complex systems.

 Laser experiments allow to generate sufficient data to test new 

methods of data analysis for prediction, classification, etc.

Ocean rogue wave (sea surface

elevation in meters)

Extreme optical pulse (optical rogue wave)

Abrupt transition

Laser & neuronal spikes



At home (Blanes, Feb. 2020)

Research question: how to identify (and predict) 

transitions between different dynamical regimes?

Are weather extremes becoming more extreme? more frequent?
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

Big risk for traffic and 

off-shore platforms!

newscientist.com



la
s
e
r 

c
u
rr

e
n
t

Example of an experimental system where we can study 

the gradual transition between two dynamical regimes

Time

Output intensity recorded in 

the oscilloscope (osc)
Laser diode (LD) with optical 

feedback from a mirror



How complex signals emerge from noise?
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Video: how complex optical signals emerge from noisy 

fluctuations

https://youtu.be/nltBQG_IIWQ


Can differences be quantified? With what reliability?

Time

Laser output intensity

Low pump current (only noise?)

High pump current (chaos?)



Another example of a gradual variation: Surface Air 

Temperature (SAT) in two geographical regions
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Can changes be quantified? With what reliability?

D. A. Zappala et al., Earth Syst. Dynam. 9, 383 (2018)



Courtesy of Henk Dijkstra (Ultrech University)

The Climate System is a “complex system”



Thanks to advances in computer science, global climate 

models allow for “very good” weather forecasts

15

Nature, February 2010
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Nature, February 2010



Nowadays: better weather forecasts with artificial intelligence 
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HURRICANE HARVEY killed 

107 people and caused $125 

billion in damage when it hit the 

southeastern US in August 2017.

At NOAA (US National Oceanic and 

Atmospheric Administration) scientists 

test AI and other emerging methods to 

help improve the prediction of severe 

weather events.

AI algorithms can be designed for 

forecasting a specific weather feature, 

such as hail or severe wind.

Physics Today May 2019



But AI and state-of-the-art climate models are not very 

useful for improving the understanding of our climate.
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On the other hand, “over-simplified models” are not useful ! 

Did you hear about the “spherical cow”?
In early summer, 1996, milk production at a 

Wisconsin dairy farm was very low. The farmer wrote 

to the state university, asking help from academia. A 

multidisciplinary team of professors was assembled, 

headed by a theoretical physicist, and two weeks of 

intensive on-site investigation took place. A few 

weeks later, a physicist phoned the farmer, "I've got 

the answer," he said, "But it only works when you 

consider spherical cows in a vacuum. . . .“ 
Source:https://mirror.uncyc.org/wiki/Spherical_Cows

We need analysis tools that extract information directly from 

data (empirical or generated with high-dimensional models)
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Main goal of Time Series Analysis: to extract information 

from data

What for?

‒ Classification

‒ Prediction 

‒ Model verification

‒ Parameter estimation



T. A. Schieber et al, Nature Communications 8,13928 (2017).

C. Quintero-Quiroz et al, Chaos 28, 106307 (2018).

Example: analysis of EEG signals

Distinguish alcoholic subjects from control subjects

Eyes open or eyes closed?



Example: the analysis of climatic time series allows 

inferring statistical similarities and/or causal relations 
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xi(t): Anomaly of a 

climatological variable in a 

geographical region “i"

Donges et al, Chaos 2015

Time
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https://arxiv.org/abs/1507.01571


Industry 4.0 (I4) = smart factories

22

Optical / photonic sensors + artificial intelligence + 

big data  I4 revolution



 Help early detection of defects and production failures

 enabling their prevention 

 increasing productivity, quality, and agility 

 increasing competitive value

 Big data analytics comprises (6C system): 

− Connection (sensor and networks)

− Cloud (computing and data on demand)

− Cyber (model & memory)

− Content/context (meaning and correlation)

− Community (sharing & collaboration)

− Customization (personalization and value)

Role of big data analytics in Industry 4.0

23



− Connection (sensor and networks)

− Cloud (computing and data on demand)

− Cyber (model & memory)

− Content/context (meaning and correlation)

− Community (sharing & collaboration)

− Customization (personalization and value)

Role of signal processing and time series analysis in I4
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Strong need of analysis tools that extract 

reliable information directly from data



Example: advances in wireless sensor technologies 

enable the Internet of Things (IoT)
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Smart electrical grids
Smart Farms: sensors connected 

to internet can allow control and 

forecasting (by taking into account 

weather information) 

Smart homes, factories, cities, & medicine (patients, aging citizens)



With the ubiquitous presence of sensors everywhere, 

time series analysis has found many applications
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Example: automated 

optical sensors 

monitor large forest 

areas for fires

Source: SPIE



Example:  LED-based 

sensors are enabling 

“Smart Cities”

27Optics and Photonics News 

November 2018



Example: wireless sensors 

for health monitoring
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 Just two tiny wireless sensors, one on the foot and one 

on the chest, suffice to monitor all of an infant’s vital signs 

(but until the wireless devices are approved, patients 

need to wear the standard wired sensors too).

 From two measures of the heartbeat (an ECG recorded 

by the chest sensor and a PPG measured by a foot 

sensor) clinicians can extract the pulse arrival time from 

the heart to the foot, that is a measure of blood pressure.

 To reduce the amount of data that needs to be 

transmitted through the wireless link much of the signal 

processing—for example, identifying the peaks in the 

ECG waveform—is done on the sensors themselves.

Physics Today may 2019



 Many methods have been developed to extract information 

from a time series.

 The methods to be used depend on the characteristics of the 

data

− Length of the time series; 

− Stationarity; 

− Level of noise; 

− Temporal resolution;

− etc.

 Different methods provide complementary information.

Methods of time series analysis
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X = {x1, x2, … xN}



Good results depend on our knowledge of the system 

that generates the time series.

30



Modeling assumptions about the system that generates the 

data:

‒ Stochastic or deterministic?

‒ Regular or chaotic or “complex”?

‒ Stationary or non-stationary? Time-varying parameters?

‒ Low or high dimensional?

‒ Spatial variable? Hidden variables?

‒ Time delays? 

Where the data comes from?

31



Historic background: 
from dynamical systems to complex systems

going through bifurcations and chaotic attractors



 Mid-1600s: Ordinary differential equations 

(ODEs)

 Isaac Newton: studied planetary orbits and 

solved analytically the “two-body” problem (earth 

around the sun).

 Since then: a lot of effort for solving the “three-

body” problem (earth-sun-moon) – Impossible.

The beginning of the mathematical modelling of 

dynamical systems: Newtonian mechanics



 Henri Poincare (French mathematician). 

Instead of asking “which are the exact positions of planets 

(trajectories)?” 

he asked: “is the solar system stable for ever, or will planets 

eventually run away?”

 He developed a geometrical approach to solve the problem.

 Introduced the concept of “phase space”.

Late 1800s

x
y

z

 Poincaré recurrence theorem: certain systems will, 

after a sufficiently long but finite time, return to a 

state very close to the initial state. 

 He also had the intuition of the possibility of chaos.



Deterministic system: the initial conditions fully determine 

the future state.  

Deterministic chaotic system: there is no randomness but 

the system can be, in the long term, unpredictable.

Poincare: “The evolution of a deterministic system can 

be aperiodic, unpredictable, and strongly depends on the 

initial conditions”.

A problem in time series analysis: How to determine the 

prediction horizon? With what reliability?



 Computes allowed to experiment with equations.

 Huge advance in the field of “Dynamical Systems”.

 1960s: Eduard Lorenz (American mathematician 

and meteorologist at MIT): simple model of 

convection rolls in the atmosphere.

 Famous chaotic attractor.

1950s: First computer simulations



Attractors: fixed points, limit cycles, quasi-periodic torus, 

chaotic and “strange” (also known as fractal)

2D projection of 3D Lorenz attractor



Can we observe chaos experimentally?



A problem in time series analysis: how to “reconstruct” 

the phase space? How many dimensions?

39

Bradley & Kantz, Chaos 25, 097610 (2015); B. Blasius et al, Nature 399, 354 (1999). 

Example: Lynx abundances in six regions in Canada

Time series simulated with a model

x(t)

y(t): an 

independent 

variable, 

obtained 

from x(t) [for 

example, 

x(t+)]



Example: Turn-on transient of a Nd3+:YAG laser

40

What is D? D=(dI/dt)/I+1

T. Erneux and P. Glorieux, Laser Dynamics (Cambridge University Press 2010)

D

Laser 

intensity



 Robert May (Australian, 1936): population biology

 "Simple mathematical models with very 

complicated dynamics“, Nature (1976).

The 1970s

 Difference equations (“iterated maps”), in spite of being 

simple and deterministic, can exhibit: stable points, 

stable cycles, and apparently random fluctuations. 

)(1 tt xfx 

)1( )( xxrxf A classical example: The Logistic map

x(0,1), r(0,4)



The logistic map:
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The fixed point is the solution 

of: x = r x (1-x)  x = 1 – 1/r

)](1)[( )1( ixixrix 

r=2.8, Initial condition: x(1) = 0.2

Transient relaxation → long-term stability

Transient dynamics → oscillations

(regular or irregular)

x(0,1), r(0,4)



Bifurcation diagram: period-doubling (or subharmonic) 

route to chaos 
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In 1975, M. Feigenbaum (American 

mathematician and physicist 1944-

2019), using a small HP-65 calculator, 

discovered the scaling law of the 

bifurcation points of the Logistic map.

Order within chaos and a “hidden” law in the subharmonic 

route to chaos

HP-65 calculator: the 

first magnetic card-

programmable 

handheld calculator

...669201.4lim
1


i

i

L

L




A universal law

Feigenbaum showed that the same behavior, with the 

same mathematical constant, occurs for a wide class of 

functions (functions with a quadratic máximum).

Very different systems (in chemistry, biology, physics, 

etc.) go to chaos in the same way, quantitatively.



Early experiments: a periodically modulated CO2 laser
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Constant modulation frequency, increasing the modulation amplitude

Tredicce et al, Phys. Rev. A 34, 2073 (1986).



We have seen how to make a bifurcation diagram, but, 

what exactly is a “bifurcation”?

A change in the structure of the phase space when a 

control parameter is varied:

• Attractors can be created or destroyed

• The stability of an attractor can change

Strogatz, Nonlinear dynamics and chaos



Example: neuronal spikes

Control parameter increases in time

Eugene M. Izhikevich, Dynamical Systems in Neuroscience



Bifurcation but no change of 

behavior

Change of behavior but no 

bifurcation

A bifurcation is not equivalent to a change of behavior.



Another main problem of time series analysis: how to 

predict that we are approaching a bifurcation (or more 

in general, a “tipping point”)?

G. Tirabassi et al. Ecological 

Complexity 19, 148 (2014).

M. Marconi et al, Phys. Rev. Lett. 

125, 134102 (2020).

To identify “early warning signals” 

nonlinear methods of time series 

analysis are (in general) more 

promising that linear ones.



 Benoit Mandelbrot (Polish-born, French 

and American mathematician  1924-

2010): “self-similarity” and fractal 

objects: 

each part of the object is like the whole 

object but smaller.

 Because of his access to IBM's 

computers, Mandelbrot was one of the 

first to use computer graphics to create 

and display fractal geometric images.

The late 1970s



Cantor set (introduced by German mathematician Georg Cantor in 

1883): remove the middle third of a line segment and then repeat the 

process with the remaining shorter segments

Fractal structure: a part of the object resembles the hole object.

D=0.63



How to estimate the dimension of a fractal? 

53Abarbanel et al, Reviews of Modern Physics 65, 1331 (1993).

Box counting:
(more latter)



Sierpiński triangle
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Source: Wikipedia

D=1.585



Fractal objects: characterized by a “fractal” dimension 

that measures roughness.

Video: http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180

Broccoli

D=2.66
Human lung

D=2.97

Coastline of 

Ireland

D=1.22

A lot of research is focused on detecting fractal behavior in 

observed data.

http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180


Application of fractal analysis

56

The fractal dimension of the blood vessels in the normal 

human retina is about 1.7 while it tends to increase with 

the level of diabetic retinopathy.

P. Amil et al., PLoS ONE 14, e0220132 (2019).



 Ilya Prigogine (Belgium, born in Moscow, Nobel 

Prize in Chemistry 1977).

 Studied thermodynamic systems far from 

equilibrium.

 Discovered that, in chemical systems, the 

interplay of (external) input of energy and 

dissipation can lead to “self-organized” patterns.

Spatio-temporal patterns: how “self-organization” emerges?



Honey bees do a spire wave to 

scare away predators 

https://www.youtube.com/watc

h?v=Sp8tLPDMUyg

The study of spatio-temporal patterns has uncovered 

striking similarities in nature

58https://media.nature.com/original/nature-

assets/nature/journal/v555/n7698/extref/nature26001-sv6.mov

Rotating waves 

occur in the heart 

during ventricular 

fibrillation

Hurricane Maria 

(Wikipedia)



The 1990s: synchronization of two chaotic systems

Unidirectionaly coupled 

Lorenz systems



In mid-1600s Christiaan Huygens (Dutch 

mathematician) noticed that two pendulum 

clocks mounted on a common board 

synchronized and swayed in opposite directions 

(in-phase also possible).

Actually, the first observation of synchronization was 

much earlier (mutual entrainment of two pendulum clocks)



Different types of synchronization

 Complete: y(t) = x(t) (identical systems) 

 Phase:  the phases of the oscillations are synchronized, but 

the amplitudes are not.

 Lag: y(t+) = x(t)

 Generalized:   y(t) = F(x(t-)) (F and  can depend on the

coupling strengths,  and )

)( )(

)(

yxgyf
dt

dy

xf
dt

dx





 )( )(
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yxgyf
dt
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Unidirectional coupling: Bidirectional (mutual) coupling:

Another problem of time series analysis: 

How to detect synchronization? How to quantify it?



Synchronization can occur for a range of coupling strengths 

62

Pecora et al, Chaos 7, 520 (1997).

Max. transverse 

Lyap. Exponent, 

determines the 

stability of the 

synchronized 

(x=y) solution



Experimental observation of synchronization of chaotic systems



An example of lag synchronization

64

C. Masoller, Phys. Rev. Lett 86, 2782 (2001).

Two laser diodes (LD), with 

“feedback” from a mirror (M) with time 

delay , and coupled with time delay 

c (uni-directionally or bi-directionally 

with or without an optical isolator, OI).

The lag depends on  - c.

LD1

LD2

OI

Lext

Lc

c

L

c

L c
c

ext        ;
2

Other problems in time series analysis: How to detect the presence of 

feedback loops? How to detect delays in the interactions? 

LD1

LD2

Time (arb. units)



Back to the abundances of the Lynx 

populations in six regions in Canada

65

B. Blasius et al, Nature 399, 354 (1999). 

This is an example of 

phase synchronization: 

populations oscillate 

regularly and periodically 

in phase, but with irregular 

and uncorrelated chaotic 

peaks.

Foodwebs (that represent the 

interactions of vegetation and 

populations of herbivores and 

predators) can display very 

complex oscillatory behaviors.



Simplest version:

x is the number of prey (for example, rabbits);

y is the number of predators (for example, foxes).

Two equations  only stable or periodic oscillations. 

Aperiodic (chaotic) behavior occurs when other 

variables or spatial effects are included in the model.

Lotka–Volterra predator–prey model (early 1900s) 

66



Stochastic resonance: the addition of an optimal level of 

noise to a weak input signal can, in some nonlinear systems, 

enhance the detection of the signal, improving the “output” 

performance of the system.

Role of noise in nonlinear systems? (80’ and early 90’)

67

“We demonstrate significant 

broadening of the spatial range 

for the detection of plankton 

when a noisy electric field of 

optimal amplitude is applied in 

the water. We also show that 

swarms of Daphnia plankton 

are a natural source of 

electrical noise.”
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Let’s consider an example: monthly sampled surface air 

temperature (SAT). 

Anomaly = annual solar cycle removed

In each grid point we have a time series with 768 data points 

(1949-2013: 64 x 12). How does the data look like?

But what is “noise”? 



 Reanalysis of National Center for Environmental Prediction, 

National Center for Atmospheric Research (NCEP-NCAR). 

 Reanalysis = run a sophisticated model of general 

atmospheric circulation and feed it with the available 

experimental data, in the different points of the Earth, at their 

corresponding times (data assimilation: second block). 

 This process restricts the solution of the model to one as 

close to reality as possible in regions where there are data 

available, and to a solution physically “plausible” in regions 

where no data is available.

69

Where does the data come from?



So, what is “noise”? 

70
Cartoon of a two-dimensional random walk or drunkard’s walk. 

From Gamow (The Viking Press, New York,1955)

Gaussian noise (uncorrelated, 

memory less) is well known, but 

many other types of noises have 

been discovered.

A main problem of time series 

analysis: find the signal (i.e., filter out 

noise, preprocess the signal).

Another problem: to quantify the 

degree of determinism (i.e., to 

distinguish “noise” from “chaos”).

Someone's noise is another one's signal.

For a climatologist “weather” is noise.



In the late 90s early 2000s: synchronization of a large 

number of coupled oscillators  

London Millennium Bridge Opening



Model of all-to-all coupled phase oscillators. 

K = coupling strength, i = stochastic term (noise) 

Describes the emergence of collective behavior

How to quantify?      

With the order parameter:
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A model proposed some time ago is now a 

“classic”: the Kuramoto model (Japanese physicist, 1975)

r =0 incoherent state (oscillators scattered in the unit circle)

r =1 all oscillators are in phase (i=j  i,j)



Synchronization transition as the coupling strength increases

Strogatz, Nature 2001

Video: https://www.ted.com/talks/steven_strogatz_on_sync

https://www.ted.com/talks/steven_strogatz_on_sync


 Complicated systems (large sets of linear elements) are not 

complex.

 Complex systems: large number of elements, where the 

elements and/or their interactions are nonlinear.

 Main difference: the whole is not equal to the sum of the parts.

2000s to present: from chaotic systems to complex systems 

(a good meal is another example: it is much more than the sum of its ingredients)



Network science

S. Strogatz, Nature 2001

 Networks (or graphs) are used for mathematical modelling 

of complex systems.

 Complexity science: study of the emergent properties, not 

present in the individual elements.

 The challenge: to understand how 

the structure of the network and 

the dynamics of individual units 

determine the collective behavior.

 Applications

‒ Epidemics

‒ Rumor spreading

‒ Transport networks

‒ Financial crises

‒ Brain, physiology, etc.



 The problem was to devise a walk through the city that 

would cross each of those bridges once and only once. 

The start of Graph Theory: The Seven Bridges of Königsberg
(Prussia, now Russia) 
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 By considering the number of odd/even links of each 

“node”, Leonhard Euler (Swiss mathematician) 

demonstrated in 1736 that is impossible. 

→ →

Source: Wikipedia



The SIR epidemic model (early 1900s)

In its simplest version the SIR 

model consists of three rate 

equations for

 S(t): individuals not yet 

infected (susceptible). 

 I(t): infected individuals that 

are capable of spreading the 

disease to those susceptible. 
Time

 R(t): individuals that have been infected and can’t be re-

infected nor transmit the infection to others (either due to 

immunization or due to death).

 N = S(t) + I(t) + R(t) constant.

 The model predicts the existence of a threshold that 

separates grow from extinction.

Source: Wikipedia



 Immunity that lasts only a certain time interval (after which 

individuals are back in the susceptible group).

 Additional populations

- E: exposed people that could have been infected;

- C: susceptible people that are protected in a 

confinement compartment;

- Q: infected people in quarantine;

- B, D: births and deaths

- Etc.

 Many extensions of the model to take into account

diffusion in “networks”.

Many extensions of the SIR model

78

https://www.investigacionyciencia.es/revistas/investigacion-y-ciencia/una-crisis-csmica-

798/cmo-modelizar-una-pandemia-

18561?utm_source=Facebook&utm_medium=Social&utm_campaign=fb+web

Pastor-Satorras et al, Rev. Mod. Phys. 87, 925 (2015)



A few examples of epidemic models
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SIS: No long lasting immunity 

(example: cold).

MSIR: Babies have some initial immunity.

Some people might not recover and can be back to infectious or 

carry disease with symptoms (ex: tuberculosis).

For some infections there is an incubation period during which 

individuals have been infected but are not yet infectious.

Source: Wikipedia
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Example of transmission network of Covid-19

Source: Alison Hill, The math behind epidemics, 

https://physicstoday.scitation.org/doi/10.1063/PT.3.4614

Transmission network 

seeded by an 

unknown infected 

individual (blue) who 

attended a training 

course with other 

fitness instructors 

(purple). 

The fitness instructors 

spread the infection to 

students in their 

classes (red), to 

family (yellow), and to 

coworkers (green).



Different synchronization regimes can occur, depending on: 

 The coupling function (attractive / repulsive).

 The network topology (homogeneous / heterogeneous).

 The number of units (“crowd synchrony”)

 The properties of the individual units, in relation to the network:

• relation between the # of links an element has and the # of links the 

neighbors have.

• relation between the # of links that an element has and its properties.

 The synchronization transition can be gradual or explosive.

 Synchronized and unsynchronized oscillations can co-exist (“chimera 

states”).

 Bi-stability: the network can synchronize, depending on the initial conditions.

Revisiting the Kuramoto model
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Star (K+1 nodes)

Example: “Explosive” synchronization
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Random Scale free

1=K

i=1 i1

J. Zamora et al., Phys. Rev. Lett. 105, 264101 (2010). 

J. Gomez-Gardeñes et al., Phys. Rev. Lett. 106, 128701 (2011). 

I. Leyva et al, Phys. Rev. Lett. 108, 168702 (2012).

Fast oscillators have 

many links; slow 

oscillators only few links

Explosive sync. has been found in coupled 

lasers and in electronic circuits.



 N identical oscillators (i=0) with spatial coordinates xi

that are uniformly distributed in the interval (-1, 1).

 G nonlocal positive coupling:

  (“frustration parameter”) < /4

“Chimera states”: spatiotemporal patterns in which 

coherence coexists with incoherence

symmetric asymmetric

Omel’chenko et al, Phys. Rev. E 81, 065201R (2010).
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“Crowd synchrony”: the millennium footbridge starts to sway 

when packed with pedestrians that synchronize their steps.
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Model the bridge as a weakly damped 

and driven harmonic oscillator:

The bridge’s movement alters each 

pedestrian’s gait:

S. Strogatz, Nature 438, 43 (2005).



Interactions between networks: interdependent networks
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Source: Wikipedia

Time series analysis problems: how to predict a critical (or extreme) event in 

one network? (a failure of a link or a node) How will it affect other networks?



Multilayer networks
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Kivela et al, J. Complex Netw. 2, 203 (2014).

Time series analysis problem: how 

to predict the existence of a link?

Facebook

Twitter

Linkedin



“Functional networks”: inferred from “bivariate” analysis 

of time series recorded in the nodes

Eguiluz et al, 

Phys. Rev. Lett. (2005)



Same procedure used to analyze climate data  climate network
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Donges et al, Chaos 2015

(Data 

assimilation)

Cambridge 

University 

Press 2019



 For a given time series, by using different methods of 

analysis we can a large number of “features”, M.

 Examples of “features”: 

• statistical properties (mean value, standard deviation, 

etc.), 

• Fourier properties (main frequencies), 

• fractal dimension, Lyapunov exponent, etc. etc.

 If we have a large set of time series to analyze (N), we end 

up with a huge number of features (N x M).

Time series analysis + complex systems  Big Data
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 Is a field that treats ways to analyze, systematically extract 

information from, or otherwise deal with data sets that are 

too large or complex to be dealt with by traditional data-

processing application software (Wikipedia)

 It seeks to identify complex and evolving relationships 

among data.

 How? “Data mining”: the process of finding anomalies, 

patterns and correlations within large data sets.

What is “Big data”?
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Five “data mining” classification algorithms (second block)
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Support Vector Machine

M. Zanin et al, Physics Reports 635, 1 (2016).

Decision Tree



Summary

 Dynamical systems allow to 

‒ understand low-dimensional systems, 

‒ uncover patterns and “order within chaos”, 

‒ characterize attractors, uncover universal features

 Synchronization emerges in interacting dynamical systems.

 Complexity and network science: phenomena in large sets 

of nonlinear interacting units.

 Time series analysis develops methods to characterize 

signals and to obtain “features”.

 Data science: feature selection and analysis.

 Time series analysis is an interdisciplinary field with many 

applications.



 “Reconstruct” the phase space of a low-dimensional 

dynamical system from (incomplete) observed data.

 Is the signal just noise? Has a degree of determinism? 

 Can the signal be predicted? Which is the prediction 

horizon?

 Is the system approaching a dynamical transition (“tipping 

point”)? 

 Are two (or more) oscillatory systems synchronized?

 Are there time delays in the interactions? Feedback loops?

 Are systems interdependent? How extreme events in one 

system propagate to other systems?

Summary of some relevant time series analysis problems
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Holger Kantz: “Every data set bears its own 

difficulties: data analysis is never routine”



Hands-on exercise 1: analyze the logistic map
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Parameter r

x(i)

)](1)[( )1( ixixrix 

 Plot the 

bifurcation 

diagram.

 Estimate 

=(r2-r1)/(r3-r2)

r2-r1 r3-r2
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