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SCHEDULE OF THE COURSE

Block O0: Matlab
Block 1. Block 2:
Characterization of time | | Data analysis tools
series Machine Learning
Introduction techniques
Univariate analysis Classification methods
Bivariate analysis Control, data assimilation
Multivariate analysis and Kalman Filters

Lecturers: C. Masoller, A. J. Pons 2



Learning objectives of the first module

= Learn about the historic background and become familiar
with current techniques (linear and nonlinear) for time series
analysis.

= Became familiar with techniques for detecting statistical
similarities and interdependencies in time series.

= Gain a broad knowledge of data-driven techniques for
studying complex systems.



Outline of the first block

= |ntroduction

= Univariate analysis

= Bivariate analysis

= Multivariate analysis




Time Series Analysis: what is it about? X ={X;, X5, ... X\}

Optical spikes Neuronal spikes

infiniium e ‘ 50 !

I o ol

N _1 00 1 1 1 1 1
j 2000 2500 3000 3500 4000 4500 5000
Time (ms)

Voltage (mV)

BEEEEEEN E

Time A(;ps);

* Similar dynamical systems generate these signals?

* Ok, very different dynamical systems, but maybe
similar statistical properties?

* Time series analysis can find “hidden similarities™ in
very different systems.



Time series analysis is a highly inter-disciplinary research field

In our lab we work on Data analysis

— lasers

— neurons

— complex networks Nonlineaft -

— climate data dynamics Applications

— biomedical data



Lasers, neurons, climate, complex systems?

= Lasers allow us to study in a controlled way phenomena that
occur in diverse complex systems.

= Laser experiments allow to generate sufficient data to test new
methods of data analysis for prediction, classification, etc.

Laser & neuronal spikes

30

Ocean rogue wave (sea surface
| o eIevatlon in meters)
T 20
Sl | i5 Draupner 1995 -
£ |
2 F s b | J J A Lttt \[ \
‘ = | £ I Tl |
L 50 0 W[mf4HPM\V1 ‘“n| J uu[\ ﬁ {
e L AR
Abrupt trans'tlon -102%00 2550 30I00 35I00 4060 4560 5000 0 Tme in SeCOHdS 660
Time (ms)
250
. Extreme optical pulse (optical rogue wave)
g ,é15 o I I I I 5
5 150 = 10 l
\: _Em— 5 n
() S 0
0(33 100 250 l 145 15 |
50 é ()= | w‘
- 0 5 10 15 20 25
0 Time (ns)

0 200 400 600 800 1000
Time (0.1ns)



Research question: how to identify (and predict)
transitions between different dynamical regimes?

Are weather extremes becoming more extreme? more frequent?

S'ﬁf ODAY

A publication of the American Institute of Physics

At home (Blanes, Feb. 2020)
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off-shore platforms!

Science & Environment

Rogue waves occurring less but
‘becoming more extreme’

By Rebecca Morelle
Science Correspondent, BBC News
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Rogue waves are a growing threat for the global shipping industry



Example of an experimental system where we can study
the gradual transition between two dynamical regimes

Laser diode (LD) with optical
feedback from a mirror

LD 0 """"""""

BS

v Mirror

Amplifier

Waveform generator

|
OSC.

Output intensity recorded in
the oscilloscope (osc)

— /1
Q?ser current



How complex signals emerge from noise?

Quantitative identification of dynamical transitions
in a semiconductor laser with optical feedback

Carlos Quintero, Jordi Tiana-Alsina, Jordi Roma,
M. Carme Torrent, and Cristina Masoller.

Recerca en Dindmica No Lineal, Optica No Linea e s

Dinamica i Optica No Lineal i Lasers (DONLL)
Dept. Fisica, Terrassa, Barcelona, Spain

Video: how complex optical signals emerge from noisy
fluctuations

11



https://youtu.be/nltBQG_IIWQ

Laser output intensity

4 I | | | | i
2 ) "l
:
-4 l | ' Low pump current (only noise?)
2 I | T T I I
—) ‘ |
_4 ! ! | | High pump current (chaos?)

Time

Can differences be quantified? With what reliability?




Another example of a gradual variation: Surface Air
Temperature (SAT) in two geographical regions

34 - - . . . -
20 . . ' ' ' .
1985 1990 1995 2000 2005 2010
| WMWWWW
1985 1990 1995 2000 2005 2010

Can changes be quantified? With what reliability?

D. A. Zappala et al., Earth Syst. Dynam. 9, 383 (2018)



The Climate System is a “complex system”

Atmospheric Physics/Dynamics

|

Terrestrial Energy
Moisture

Global Moisture

{

Marine Terrestrial
Biogeochemistry Ecosystems

Stratospheric Dynamics/Physics

Tropospheric Chemistry

Biogeochemical Cycles | Pollutants

Courtesy of Henk Dijkstra (Ultrech University)



Thanks to advances in computer science, global climate
models allow for “very good” weather forecasts

THE CI.IMATE MACHINE

15
Nature, February 2010



Mid-1980s - Mid-1990s

" Overturning

circulation Plants and soil

Nature, February 2010




Nowadays: better weather forecasts with artificial intelligence

At NOAA (US National Oceanic and

% : Atmospheric Administration) scientists
o A test Al and other emerging methods to

| SRR help improve the prediction of severe

107 people and caused $125 Al algorithms can be designed for

billion in damage when it hit the forecasting a specific weather feature,

southeastern US in August 2017. such as hail or severe wind.

’

17
Physics Today May 2019



But Al and state-of-the-art climate models are not very
useful for improving the understanding of our climate.

On the other hand, “over-simplified models” are not useful !

Did you hear about the “spherical cow™?
In early summer, 1996, milk production at a
Wisconsin dairy farm was very low. The farmer wrote
to the state university, asking help from academia. A
multidisciplinary team of professors was assembled,
headed by a theoretical physicist, and two weeks of
intensive on-site investigation took place. A few
weeks later, a physicist phoned the farmer, "lI've got
the answer," he said, "But it only works when you

consider spherical cows in a vacuum. . . .“
Source:https://mirror.uncyc.org/wiki/Spherical_Cows

We need analysis tools that extract information directly from
data (empirical or generated with high-dimensional models)

18



Main goal of Time Series Analysis: to extract information
from data

hr science behilnd a $2 billion 'lul Synupses shrink during
hu able ) sig sheep . :

What for?

— Classification SC ﬁnce %K

— Prediction
— Model verification \
— Parameter estimation ﬂ ON

\Mmm aboutl man activitie

19



Example: analysis of EEG signals

@ Control @ Alcoholic

Distinguish alcoholic subjects from control subjects

3080 90 120 I50 180 210 240
time (seq)

time (s)

T. A. Schieber et al, Nature Communications 8,13928 (2017).
C. Quintero-Quiroz et al, Chaos 28, 106307 (2018).



Example: the analysis of climatic time series allows
Inferring statistical similarities and/or causal relations

— Bivariate
\><o/o || A ' statistical
- ﬂl |‘J "ik.;igﬂ;l similarity
= |l [ HINL analysis
S >
Py
N
—i
X

Time

Xi(t): Anomaly of a
climatological variable in a
geographical region “I"

Donges et al, Chaos 2015 “



https://arxiv.org/abs/1507.01571

Industry 4.0 (14) = smart factories

The Four Industrial Revolutions

S S '
ircustry 1.0 [ maustry 2.0 [ tncusiy 3.0 [ incustry 6.0 |

Mechanization and the Mass production Automated production, The Smart Factory.
introduction of steam assembly lines using computers, IT-systems Autonomous systems,
and water power electrical power and robotics loT, machine learning

Optical / photonic sensors + artificial intelligence +
big data = 14 revolution

22



Role of big data analytics in Industry 4.0

= Help early detection of defects and production failures
—> enabling their prevention

—> Increasing productivity, quality, and agility

—> Increasing competitive value

= Big data analytics comprises (6C system):
— Connection (sensor and networks)

— Cloud (computing and data on demand)

— Cyber (model & memory)

— Content/context (meaning and correlation)
— Community (sharing & collaboration)

— Customization (personalization and value)

23



Role of signal processing and time series analysis in 14

— Connection (sensor and networks)

— Cloud (computing and data on demand)

— Cyber (model & memory)

— Content/context (meaning and correlation)
— Community (sharing & collaboration)

— Customization (personalization and value)

Strong need of analysis tools that extract
reliable information directly from data

24



Example: advances in wireless sensor technologies
enable the Internet of Things (loT)

Smart Farms: sensors connected
to internet can allow control and
forecasting (by taking into account
weather information)

Smart electrical grids

Smart homes, factories, cities, & medicine (patients, aging citizens)

25



With the ubiquitous presence of sensors everywhere,
time series analysis has found many applications

Example: automated
optical sensors
~—— sk — monitor large forest
‘ _ areas for fires
£

Coverage of an area

of 310,000 ha
with 10 SYSTEMS

on fire watchtowers

Source: SPIE

OPTICAL
SENSOR
SYSTEM

optics for night-

time operation

optics for day-
tirme operation

The optical sensor system registers smoke
development automatically in the visible
and infrared spectral range. The camera turns

itself in stages on its own axis over & minutes.

ﬂ FOREST FIRE
-7 ALARM CONTROL

CENTER
receives data and images
if a fire is detected

CAMERA
ANGLE OF
VISION

60* per minute



Example: LED-based
sensors are enabling |
“Smart Cities” ool oo,

saving LEDs offer opportunities
for directing light and controling
color temperature, brightness
and appearance.

“Smart grid” light
Photocell control

U-100% dimming
On-demand light
levels

Ve

{ THE NETWORK
| Overlapping signals of multiple,
{ wireless-enabled poles “talk” with  _
\ each other, allowing a view of the
entire lighting system and its
status as an integrated whole.

COMMUNICATIVE CARS

Integration between traffic and Lighting could adapt
infrastructure will come as vehicles 1o individuals walking or
increasingly communicate with cycling on the street based

the smart-streetlight network on comunkalions between
via wireless technologies. streetlights and their
cellphones_

Optics and Photonics News NSO Ny, Ny N R Ny, N, Ny, N,
November 2018



Example: wireless sensors |,

for health monitoring

Physics Today may 2019

Electrocardiogram

04 - —
*  Pulse !
» arrival ¢
time

NORMALIZED AMPLITUDE

Photoplethysmogram

0.2 4

0 T T T
0 0.5 1 15 2
TIME (s)

Just two tiny wireless sensors, one on the foot and one
on the chest, suffice to monitor all of an infant’s vital signs
(but until the wireless devices are approved, patients
need to wear the standard wired sensors t00).

From two measures of the heartbeat (an ECG recorded
by the chest sensor and a PPG measured by a foot
sensor) clinicians can extract the pulse arrival time from
the heart to the foot, that is a measure of blood pressure.
To reduce the amount of data that needs to be
transmitted through the wireless link much of the signal
processing—for example, identifying the peaks in the

ECG waveform—is done on the sensors themselves.
28




Methods of time series analysis X ={Xq, Xy, -.. Xp}

= Many methods have been developed to extract information
from a time series.

*= The methods to be used depend on the characteristics of the
data

— Length of the time series; | lam0sc mean monily S alba terpcsars i al gl mvand a2
— Stationarity; ol

— Level of noise; : i .

— Temporal resolution; ) W vt

— etc. y

|
1880 1900 1920 1940 1960 1980 2000 2020

= Different methods provide complementary information.

29



Good results depend on our knowledge of the system
that generates the time series.

WwFormakion: *kmw\ealge :

30



Where the data comes from?

Modeling assumptions about the system that generates the
data:

— Stochastic or deterministic?

— Regular or chaotic or “complex”?

— Stationary or non-stationary? Time-varying parameters?
— Low or high dimensional?

— Spatial variable? Hidden variables?

— Time delays?

31



Historic background:

from dynamical systems to complex systems
going through bifurcations and chaotic attractors



The beginning of the mathematical modelling of
dynamical systems: Newtonian mechanics

= Mid-1600s: Ordinary differential equations
(ODESs)

= |saac Newton: studied planetary orbits and
solved analytically the “two-body” problem (earth
around the sun).

= Since then: a lot of effort for solving the “three-
body” problem (earth-sun-moon) — Impossible.



Late 1800s

Henri Poincare (French mathematician).
Instead of asking “which are the exact positions of planets
(trajectories)?”

he asked: “is the solar system stable for ever, or will planets
eventually run away?”

He developed a geometrical approach to solve the problem.
Introduced the concept of “phase space”.

Z
Poincaré recurrence theorem: certain systems will, y
after a sufficiently long but finite time, returntoa X
state very close to the initial state.

He also had the intuition of the possibility of chaos.



Poincare: “The evolution of a deterministic system can
be aperiodic, unpredictable, and strongly depends on the

Initial conditions”.

prediction
fails out here

t=0
2 initial conditions,
almost indistinguishable

Deterministic system: the initial conditions fully determine

the future state.
Deterministic chaotic system: there is no randomness but

the system can be, in the long term, unpredictable.

[=1 horizon

A problem in time series analysis: How to determine the
prediction horizon? With what reliability?



1950s: First computer simulations

= Computes allowed to experiment with equations.
®= Huge advance in the field of “Dynamical Systems”.

= 1960s: Eduard Lorenz (American mathematician
and meteorologist at MIT): simple model of
convection rolls in the atmosphere.

IL'{I' Lorenz 63
— f— — |:r-\.t| _I_ D-y . 400 Time serie_s,rg DDCI po|lnts
dt

dy

_ — —TE —|— i — y_ 20.0

dt

d—: = xy — bz, =
; i \M |

" Famous chaotic attractor.

-40.0 I L L 2 -
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 400
t
FIG. 1. Chaotic time series x (¢) produced by Lorenz (1963)
equations (11) with parameter values r=45.92, b=4.0,
o=16.0.



Attractors: fixed points, limit cycles, quasi-periodic torus,
chaotic and “strange” (also known as fractal)

J
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Can we observe chaos experimentally?

VOLUME 57, NUMBER 22 PHYSICAL REVIEW LETTEES | DECEMBER 1986

Evidence for Lorenz-Type Chaos in a Laser

C, O, Weisg and J. Brock'!

Physikalisch-Technische Bundesansalt, D-3300 Braunschwelg, Federal Republic of Germany
(Received 18 April 1586)

I|
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Il quﬂu

Laser power U, —

pulsing period ~1ps

optically pumped NH; laser



A problem in time series analysis: how to “reconstruct”
the phase space? How many dimensions?

Time series simulated with a model

ﬁ LA GB O | g
a FW “M W “m N\J JL uJ M ﬁJ ,/J 'ﬂu ?rgﬁ'ri?t? N
LML LA L bt

Example: Lynx abundances in six regions in Canada
a ._I'r T T T T T

6 -
- 44 . \
2 = 7\
E ,,_é, i \ I
x 5. I )
> . _
= = y
3\ -
8 ’\\/ 0
S, e W N RN (B A Nl | 5 S
1820 1840 1860 1880 1900 1920 1940 w(t+1) 10 10 w(t+21)

Year
39

Bradley & Kantz, Chaos 25, 097610 (2015); B. Blasius et al, Nature 399, 354 (1999).



Example: Turn-on transient of a Nd3+:YAG laser

laser
20 intensity |
10 =
latency spiking relaxation
oscillations
0 o
10 -
-20 Py ————— wb\ ;
0.0 0.2 04 06 08
time (ms)

T. Erneux and P. Glorieux, Laser Dynamics (Cambridge University Press 2010)

Laser

intensity 7\

What is D? D=(dl/dt)/I+1

40



The 1970s

= Robert May (Australian, 1936): population biology
= "Simple mathematical models with very
complicated dynamics®, Nature (1976).

Xt+1 — f (Xt)

A classical example: The Logistic map f(X) =r x(1—X)
xe(0,1), re(0,4)

= Difference equations (“iterated maps”), in spite of being
simple and deterministic, can exhibit: stable points,
stable cycles, and apparently random fluctuations.




The logistic map: X(1+1) =r x(1)[1-x(1)] xe(0,1), re(0,4)

r=2.8

A r=2.8, Initial condition: x(1) = 0.2

X 05fw ' Transient relaxation — long-term stability
o
0 10 20 | 0 4 50 The fixed point is the solution
g ofix=rx (X)) => x=1-1Ur

< o IRAANAARAAI

Transient dynamics — oscillations
O 10 0 3 40 o (regular or irregular)

g L — 85T 1 M |
S5 / MDA oa W\ il I




x(i)

T

Bifurcation diagram: period-doubling (or subharmonic)
route to chaos
1-

r=2.8
? 0.5 1 \
- \ “/
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1 | "33 // /\
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Order within chaos and a “hidden” law in the subharmonic
route to chaos

In 1975, M. Feigenbaum (American
mathematician and physicist 1944-
2019), using a small HP-65 calculator,
discovered the scaling law of the
bifurcation points of the Logistic map.

0= Iimi =4.669201...

i+1

NN

[ .
Bl

Sl
\ n

a |

t: ), : I}
_

HP-65 calculator: the
first magnetic card-
programmable

L ST handheld calculator




A universal law

Feigenbaum showed that the same behavior, with the
same mathematical constant, occurs for a wide class of
functions (functions with a quadratic maximum).

Very different systems (in chemistry, biology, physics,
etc.) go to chaos in the same way, quantitatively.




Early experiments: a periodically modulated CO, laser

Constant modulation frequency, increasing the modulation amplitude

VWWWW

(@ %MWMM
WL

L
’ m

l vs t lvs k S(f)vs f

fi2

=

fi8

5
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Tredicce et al, Phys. Rev. A 34, 2073 (1986).



We have seen how to make a bifurcation diagram, but,
what exactly is a “bifurcation”?

A change in the structure of the phase space when a
control parameter is varied:

« Attractors can be created or destroyed
* The stability of an attractor can change

beam "buckles”

beam

A S Vi A

Strogatz, Nonlinear dynamics and chaos



Example: neuronal spikes

layer 5 pyramidal cell brainstem mesV cell

transition

60 mV

transition
\\\\\ |20mv
_/ L/WuUUJL-‘WLJUHUNUJUUJHUL omy "

3000 pA

500 ms

Control parameter increases in time

Eugene M. Izhikevich, Dynamical Systems in Neuroscience



A bifurcation is not equivalent to a change of behavior.

Bifurcation but no change of Change of behavior but no
behavior bifurcation

|
| |
¥ ¥




Another main problem of time series analysis: how to

predict that we are approaching a bifurcation (or more
in general, a “tipping point”)?

To identify “early warning signals”
nonlinear methods of time series
analysis are (in general) more
promising that linear ones.

N \"'egetarion amount

-

T
.*' I
€. :
| | - 5
- # ~ ‘l G. Tirabqssi et al. Ecological
T ® Complexity 19, 148 (2014).

M. Marconi et al, Phys. Rev. Lett.
125, 134102 (2020).

>

Rainfall



The late 1970s

= Benoit Mandelbrot (Polish-born, French
and American mathematician 1924-
2010): “self-similarity” and fractal
objects:
each part of the object is like the whole
object but smaller.

= Because of his access to IBM's
computers, Mandelbrot was one of the
first to use computer graphics to create
and display fractal geometric images.




Cantor set (introduced by German mathematician Georg Cantor in
1883): remove the middle third of a line segment and then repeat the
process with the remaining shorter segments

I I
— I —_— I
- = - . . - =

S | I 1 T 1 — S I T O ] )

SO T O R O

oo 1TV T e Hewn

Fractal structure: a part of the object resembles the hole object.

D=0.63



How to estimate the dimension of a fractal?

Box counting:  bulk « sizedimension
(more latter)

Abarbanel et al, Reviews of Modern Physics 65, 1331 (1993).
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Sierpinski triangle

54

Source: Wikipedia



Fractal objects: characterized by a “fractal” dimension
that measures roughness.

Broccoll Human lung Coastline of
D=2.66 D=2.97 Ireland
D=1.22

A lot of research is focused on detecting fractal behavior In
observed data.

Video: http://www.ted.com/talks/benoit mandelbrot fractals the art of roughness#t-149180



http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180

Application of fractal analysis

The fractal dimension of the blood vessels in the normal
human retina i1s about 1.7 while it tends to increase with
the level of diabetic retinopathy.

56

P. Amil et al., PLoS ONE 14, e0220132 (2019).



Spatio-temporal patterns: how “self-organization” emerges?

= |lya Prigogine (Belgium, born in Moscow, Nobel
Prize in Chemistry 1977).

= Studied thermodynamic systems far from
equilibrium.

= Discovered that, in chemical systems, the

Interplay of (external) input of energy and
dissipation can lead to “self-organized” patterns.




The study of spatio-temporal patterns has uncovered
striking similarities in nature
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Honey bees do a spire wave to Rotating waves Hurricane Maria

scare away predators occur in the heart (Wikipedia)

https://www.youtube.com/watc during ventricular

h?v=Sp8tLPDMUyg fibrillation
https://media.nature.com/original/nature- 58

assets/nature/journal/v555/n7698/extref/nature26001-sv6.mov



The 1990s: synchronization of two chaotic systems

VOLUME 64, NUMBER 8 PHYSICAL REVIEW LETTERS 19 FEBRUARY 1990

Synchronization in Chaotic Systems

Louis M. Pecora and Thomas L. Carroll

Code 6341, Naval Research Laboratory, Washington, D.C. 20375
(Received 20 December 1989)

Unidirectionaly coupled 10
Lorenz systems o (@) ame parameters
————_BS5E b 10
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Y1 —p Y5 o 1 2 3 tTme 5 6 7 8 09
Z, H Z, 2 —

10 Az (b) Lorenz system

ditferent parameters

Drive Response

[ —> 0 ‘yz—yl‘—>0,
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Actually, the first observation of synchronization was
much earlier (mutual entrainment of two pendulum clocks)

In mid-1600s Christiaan Huygens (Dutch
mathematician) noticed that two pendulum
clocks mounted on a common board
synchronized and swayed in opposite directions
(in-phase also possible).

Figure 1.2. Original
drawing of Christiaan
Huygens illustrating his
experiments with two
pendulum clocks placed on
a common support.




|

Different types of synchronization

Unidirectional coupling: Bidirectional (mutual) coupling:
dx dx

— = f (X —=f(X)+ ph(y—x

~ (X) ” (x)+ph(y—X)

dy dy

i T+ g(x=y) o~ T+ 9(x=y)

Complete: y(t) =x(t) (identical systems)

Phase: the phases of the oscillations are synchronized, but
the amplitudes are not.

Lag: y(t+7) = X(t)
Generalized: y(t) = F(x(t-7)) (F and z can depend on the
coupling strengths, n and p)

Another problem of time series analysis:
How to detect synchronization? How to quantify it?



Synchronization can occur for arange of coupling strengths

Two Rosslers
X-coupling

0.24

Max. transverse
Lyap. Exponent,
determinesthe A
stability of the
synchronized

(x=y) solution

max

(coupling strength)
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Pecora et al, Chaos 7, 520 (1997).



Experimental observation of synchronization of chaotic systems

VOLUME 72, NUMBER 13 PHYSICAL REVIEW LETTERS 28 MARCH 1994

Experimental Synchronization of Chaotic Lasers

Rajarshi Roy and K. Scott Thornburg, Jr.
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
(Received 30 August 1993)

We report the observation of synchronization of the chaotic intensity fluctuations of two Nd:YAG
lasers when one or both the lasers are driven chaotic by periodic modulation of their pump beams.
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An example of lag synchronization o N\ Lex ‘

Two laser diodes (LD), with ﬂ | MBS M ‘
“feedback” from a mirror (M) with time L. \1, Ol
delay T, and coupled with time delay J

T. (uni-directionally or bi-directionally | LD2 }
with or without an optical isolator, Ol).
The lag depends on 7 - ..

LD1 |

LD2 W

Time (arb. units)

Other problems in time series analysis: How to detect the presence of
feedback loops? How to detect delays in the interactions?

64

C. Masoller, Phys. Rev. Lett 86, 2782 (2001).



Back to the abundances of the Lynx
populations in six regions in Canada

This i1s an example of
phase synchronization:
populations oscillate
regularly and periodically
In phase, but with irregular
and uncorrelated chaotic
peaks.

Lynx = 10% (w)

1820 1840 1 EED 188{3 1QDI} i QEIJI 1940
Year

Foodwebs (that represent the
Interactions of vegetation and
populations of herbivores and
predators) can display very

complex oscillatory behaviors.

65

B. Blasius et al, Nature 399, 354 (1999).



Lotka—Volterra predator—prey model (early 1900s)

d
d_j — QT — 55«“%
. . . dy
Simplest version: — = dzy — .

X is the number of prey (for example, rabbits);
y is the number of predators (for example, foxes).

Two equations = only stable or periodic oscillations.
Aperiodic (chaotic) behavior occurs when other
variables or spatial effects are included in the model.
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Role of noise in nonlinear systems? (80’ and early 90’)

Stochastic resonance: the addition of an optimal level of
noise to a weak input signal can, in some nonlinear systems,
enhance the detection of the signal, improving the “output”
performance of the system.

NATURE |VOL 402 |18 NOVEMBER 1999 |

Use of behavioural stochastic
resonance hy paddie fish for feeding

David F. Russell, Lon A. Wilkens & Frank Moss “We demonstrate Significant
enter o Neurodynamics, Universiy of Missourt at . Lous, Sttouss broadening of the spatial range
for the detection of plankton

when a noisy electric field of
optimal amplitude is applied in
the water. We also show that
> swarms of Daphnia plankton
Mouth are a natural source of

J electrical noise.”

a Water flow in swim mill =
*Daphnia (prey) Paddlefish

Rostrum

Electrical noise

Electrode Electrode 67




But what is “noise”?

Let’'s consider an example: monthly sampled surface air
temperature (SAT).

Anomaly = annual solar cycle removed

In each grid point we have a time series with 768 data points
(1949-2013: 64 x 12). How does the data look like?
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A Y 2y
o 5 8 Cl
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5 : G {
7 Q2P R
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) A 3 /
/ { i
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-15 : : :
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0 o o| | 1
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_5 _2 ]
-6} -1r
-3 i
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o
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Where does the data come from?

= Reanalysis of National Center for Environmental Prediction,
National Center for Atmospheric Research (NCEP-NCAR).

= Reanalysis = run a sophisticated model of general
atmospheric circulation and feed it with the available
experimental data, in the different points of the Earth, at their
corresponding times (data assimilation: second block).

= This process restricts the solution of the model to one as
close to reality as possible in regions where there are data
available, and to a solution physically “plausible” in regions
where no data is available.
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So, what is “noise”? Someone's noise Is another one's signal.
For a climatologist “weather” is noise.

Gaussian noise (uncorrelated,
memory less) is well known, but
many other types of noises have
been discovered.

A main problem of time series
analysis: find the signal (i.e., filter out
noise, preprocess the signal).

Another problem: to quantify the
degree of determinism (i.e., to
distinguish “noise” from “chaos”).

Cartoon of a two-dimensional random walk or drunkard’s walk.
From Gamow (The Viking Press, New York,1955)
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In the late 90s early 2000s: synchronization of a large
number of coupled oscillators

London Millennium Bridge Opening

Figure 1| Fireflies, fireflies burning bright. In the forests of the night,
certain species of firefly flash in perfect synchrony — here Pteroptyx
malaccae in a mangrove apple tree in Malaysia. Kaka ef al.* and
Mancoff et al.’ show that the same principle can be applied to
oscillators at the nanoscale.



A model proposed some time ago IS now a
“classic”: the Kuramoto model (Japanese physicist, 1975)

Model of all-to-all coupled phase oscillators.

dé K . .
_I p— A _I__ Sln 8- _0- _I_ H ] I :1IIIN
dt w; N ?21 ( j |) §|

K = coupling strength, & = stochastic term (noise)

Describes the emergence of collective behavior
How to quantify? N

. iy _ 1 10
With the order parameter; € = ﬁZe

j=1

r =0 incoherent state (oscillators scattered in the unit circle)
r =1 all oscillators are in phase (0;=6; V 1))



Synchronization transition as the coupling strength increases

Strogatz, Nature 2001
Video: https://www.ted.com/talks/steven strogatz on sync



https://www.ted.com/talks/steven_strogatz_on_sync

2000s to present: from chaotic systems to complex systems

Complicated systems (large sets of linear elements) are not
complex.

Complex systems: large number of elements, where the
elements and/or their interactions are nonlinear.

Main difference: the whole is not equal to the sum of the parts.

A

' )\ .\\:‘“
PR 2\
'?‘gl W | g

- . ﬁ; e

(a good meal is another example: it is much more than the sum of its ingredients)




Network science

Networks (or graphs) are used for mathematical modelling
of complex systems.

Complexity science: study of the emergent properties, not
present in the individual elements.

The challenge: to understand how
the structure of the network and
the dynamics of individual units
determine the collective behavior.

Applications

— Epidemics

— Rumor spreading

— Transport networks
— Financial crises

— Brain, physiology, etc.

S. Strogatz, Nature 2001



The start of Graph Theory: The Seven Bridges of Konigsberg
(Prussia, now Russia)

®= The problem was to devise a walk through the city that
would cross each of those bridges once and only once.

= By considering the number of odd/even links of each
“‘node”, Leonhard Euler (Swiss mathematician)
demonstrated in 1736 that is impossible.
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The SIR epidemic model (early 1900s)

In its simplest version the SIR
model consists of three rate

1000

800

equations for 600 s\ R
= S(t): individuals not yet s
infected (susceptible). .
= |(t): infected Individuals that 0 Yo
are capable of spreading the oo T

disease to those susceptible.

= R(t): individuals that have been infected and can’t be re-
Infected nor transmit the infection to others (either due to
Immunization or due to death).

= N =S(t) + I(t) + R(t) constant.

= The model predicts the existence of a threshold that
separates grow from extinction.

Source: Wikipedia



Many extensions of the SIR model

" Immunity that lasts only a certain time interval (after which
Individuals are back in the susceptible group).

= Additional populations
E: exposed people that could have been infected,;

C: susceptible people that are protected in a
confinement compartment;

Q: infected people in quarantine;
B, D: births and deaths
- Etc.

= Many extensions of the model to take into account
diffusion in “networks”.

https://www.investigacionyciencia.es/revistas/investigacion-y-ciencia/una-crisis-csmica-
798/cmo-modelizar-una-pandemia-
185617utm_source=Facebook&utm_medium=Social&utm_campaign=fb+web
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Pastor-Satorras et al, Rev. Mod. Phys. 87, 925 (2015)



A few examples of epidemic models

SIS: No long lasting immunity . Bsi
(example: cold). Susceptible | T EERVEIILIE

y!

MSIR: Babies have some initial immunity.
| — >

Some people might not recover and can be back to infectious or
carry disease with symptoms (ex: tuberculosis). |Z’

[ Susceptible ]% -

For some infections there is an incubation period during which -
individuals have been infected but are not yet infectious.

[ Susceptible ]% - -  — -
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Example of transmission network of Covid-19
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Source: Alison Hill, The math behind epidemics,
https://physicstoday.scitation.org/doi/10.1063/PT.3.4614

Transmission network
seeded by an
unknown infected
iIndividual (blue) who
attended a training
course with other
fitness instructors
(purple).

The fithess Instructors
spread the infection to
students in their
classes (red), to
family ( ), and to
coworkers (green).
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Revisiting the Kuramoto model

do K . dé.
d_tlza)i +NZJ_:S'”(91 _‘9i)+§i = - @ +Zj:AijG(‘9i’91)+5i

Different synchronization regimes can occur, depending on:
= The coupling function (attractive / repulsive).

= The network topology (homogeneous / heterogeneous).

® The number of units (“crowd synchrony”)

= The properties of the individual units, in relation to the network:

* relation between the # of links an element has and the # of links the
neighbors have.

* relation between the # of links that an element has and its properties.
= The synchronization transition can be gradual or explosive.

= Synchronized and unsynchronized oscillations can co-exist (“chimera
states”).

= Bi-stability: the network can synchronize, depending on the initial conditions.
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Example: “Explosive” synchronization

Fast oscillators have

. N N
9;‘ — W; + A ZA” Sln(é’; — 6!) W, = ki = ZAJ many links; slow

i=1 j=1 oscillators only few links
1 Random 1 Scale free . Star (K+1 nodes
(KE1)
08 r 08 | 0.8 K=10
g 9
Forward —=— Forward —w= 2 o
0.6 - Backward —— 0.6 | Backward —— 0.6 2 @ o A
- - ‘ 5 9
04 04 04 o ¢
0.2t 02t 0.2
';uxmmmu""''"‘"“"”'""""“m:l ............
0 L . L 0 . . . . 0 i . ) . Forward &
6z 04 06 08 1 12 os 1 12 14 16 18 05 (K1) 1.1 14 17 2 23 26
A A (a) (KD A
: : ®,=K
Explosive sync. has been found in coupled L

: . o=1i#l
lasers and In electronic circuits.

J. Zamora et al., Phys. Rev. Lett. 105, 264101 (2010).
J. Gomez-Gardernies et al., Phys. Rev. Lett. 106, 128701 (2011).
l. Leyva et al, Phys. Rev. Lett. 108, 168702 (2012).




“Chimera states”: spatiotemporal patterns in which
coherence coexists with incoherence

6. =%ZGij sin(9, -6, — )

= N identical oscillators (»;=0) with spatial coordinates x;
that are uniformly distributed in the interval (-1, 1).

" G nonlocal positive coupling: G; =1+ r cos z(x —xj)
= o (“frustration parameter”) <~ n/4

- symmetric___ asymmetric
» .-:' ‘::
—ct u#*. ..l-".n r‘:::"i “}?- -"
Eq O .E:st. . ‘,‘?:: ‘-—-ll#;..:}
. ’
-1
-1 0 1 -1 0 ]
(a) X (b) X

Omel’chenko et al, Phys. Rev. E 81, 065201R (2010).



“Crowd synchrony”: the millennium footbridge starts to sway
when packed with pedestrians that synchronize their steps.

Model the bridge as a weakly damped
and driven harmonic oscillator:

Md2X+BdX+KX—GN '
172 i = I_glsmei

The bridge’s movement alters each
pedestrian’s gait:

do,

w,,w 5 =+ CAsin(V— 6,+0a)
b

0 500 1,000 1,500
Time (s)

Order parameter
O
L
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S. Strogatz, Nature 438, 43 (2005).



Interactions between networks: interdependent networks

Water for cooling

Transportation

Time series analysis problems: how to predict a critical (or extreme) event in
one network? (a failure of a link or a node) How will it affect other networks?
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Source: Wikipedia



Multilayer networks

@ e

Facebook ECCS '13

_ Workshop & T
TWItter in Oxford & oSl T,
Linkedin NetSci 113§

Went to a talk
by the other

Talked to
each other

Time series analysis problem: how
to predict the existence of a link?
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Kivela et al, J. Complex Netw. 2, 203 (2014).



“Functional networks”: inferred from “bivariate” analysis
of time series recorded in the nodes

LW WVH AP pn S P R VL
il \W‘nm \ W\f\m‘W M1

00 P M Prap o Mg A P gn
0 200 400 600 800 1000
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A o g
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Thresholded
Matrix

Eguiluz et al,

Phys. Rev. Lett. (2005) Network Extracted
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Earth system Grid points / observation sites

(Data
assimilation)
1
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Network analysis *2
Networks

in Climate

Henk A. Dijkstra, Emilio Hernandez-Garcia,
Cristina Masoller and Marcelo Barreiro
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Cambridge
University
Press 2019

Time series data

Functional climate network Donges et a|1 ChaOS 2015




Time series analysis + complex systems = Big Data

= For a given time series, by using different methods of
analysis we can a large number of “features”, M.

= Examples of “features™:

- statistical properties (mean value, standard deviation,
etc.),

 Fourier properties (main frequencies),
» fractal dimension, Lyapunov exponent, etc. etc.

= |f we have a large set of time series to analyze (N), we end
up with a huge number of features (N x M).
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What is “Big data”?

= |s a field that treats ways to analyze, systematically extract
Information from, or otherwise deal with data sets that are
too large or complex to be dealt with by traditional data-
processing application software (Wikipedia)

= |t seeks to identify complex and evolving relationships
among data.

= How? “Data mining”: the process of finding anomalies,
patterns and correlations within large data sets.
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Five “data mining” classification algorithms (second block)

’ ) fL A
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M. Zanin et al, Physics Reports 635, 1 (2016).



Summary

= Dynamical systems allow to
— understand low-dimensional systems,
— uncover patterns and “order within chaos”,
— characterize attractors, uncover universal features

= Synchronization emerges in interacting dynamical systems.

= Complexity and network science: phenomena in large sets
of nonlinear interacting units.

= Time series analysis develops methods to characterize
signals and to obtain “features”.

= Data science: feature selection and analysis.

= Time series analysis Is an interdisciplinary field with many
applications.




Summary of some relevant time series analysis problems

= “Reconstruct” the phase space of a low-dimensional
dynamical system from (incomplete) observed data.

= |s the signal just noise? Has a degree of determinism?

= Can the signal be predicted? Which is the prediction
horizon?

= |s the system approaching a dynamical transition (“tipping
point”)?

= Are two (or more) oscillatory systems synchronized?

= Are there time delays in the interactions? Feedback loops?

= Are systems interdependent? How extreme events in one
system propagate to other systems?

Holger Kantz: “Every data set bears its own
difficulties: data analysis is never routine™ -



Hands-on exercise 1: analyze the logistic map

X(i +1) = r x(i)[L— x(i)]

= Plot the
bifurcation
diagram.

= Estimate

0=(ry-r1)/(r3-ry)

Ir-Iq

Parameter r
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