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Schedule 

Flows on the line 

(Strogatz ch.1 & 2) 

18/11 (3 hs) 

 Introduction 

 Solving 

equations with 

computer 

 Fixed points and 

linear stability 

 Feedback control 

and delays 

Bifurcations 

(Strogatz ch. 3) 

18/11 (2 hs) & 

24/11 (3 hs) 

 Introduction 

 Saddle-node 

 Transcritical 

 Pitchfork 

 Examples 

Flows on the 

circle 

(Strogatz ch. 4) 

25/11 (2 hs) 

 Introduction to 

phase 

oscillators 

 Nonlinear 

oscillator 

 Fireflies and 

entrainment 



 Introduction to dynamical systems 

 Introduction to flows on the line  

 Solving equations with computer 

 Fixed points and linear stability 

 Feedback control: delay differential equations 

Flows on the line: outline 



 Systems that evolve in time. 

 Examples:  

• Pendulum clock 

• Neuron 

 Dynamical systems can be:  

• linear or nonlinear (harmonic 

oscillator – pendulum);  

• deterministic or stochastic;  

• low or high dimensional;  

• continuous time or discrete 

time. 

Dynamical Systems 

Time 

Voltage 

In this course: nonlinear systems (Nonlinear Dynamics) 
 



Koch Nature1997 

A neuron: an stochastic nonlinear 

dynamical system 



• The neuron settles down to 

equilibrium (rest state or “fixed 

point”). 

 

• Keeps spiking in cycles (“limit 

cycle”). 

 

• More complicated: chaotic or 

complex evolution (“chaotic 

attractor”). 

 

Given the initial condition: 

possible evolution 

– module 1 in this course 

– module 2 

– module 3  



Historical development of the 

Theory of Dynamical Systems 



 Isaac Newton: studied planetary orbits and 

solved analytically the “two-body” problem (earth 

around the sun). 

 

 Since then: a lot of effort for solving the “three-

body” problem (earth-sun-moon) – Impossible. 

 

mid-1600s: Ordinary differential 

equations (ODEs) 



 Patented the first pendulum clock. 

 Observed the synchronization of two clocks. 

 

Christiaan Huygens (mid-1600s, 

Dutch mathematician) 

http://www.youtube.com/watch?v=izy4a5er

om8 

http://www.youtube.com/watch?v=izy4a5erom8
http://www.youtube.com/watch?v=izy4a5erom8


 Henri Poincare (French mathematician).  

 Instead of asking “which are the exact positions of planets 

(trajectories)?”  

 he asked: “is the solar system stable for ever, or will planets 

eventually run away?” 

 

 He developed a geometrical approach to solve the problem. 

 

 Introduced the concept of “phase space”. 

 

 He also had an intuition of the possibility of chaos: 

Late 1800s 



Deterministic system: the present state (initial 

condition) fully determines the future state.  

There is no randomness but the system can be 

unpredictable. 

 Poincare: “The evolution of a deterministic 

system can be aperiodic, unpredictable, and 

strongly depends on the initial conditions” 



 Computers drive economic growth and transform 

how we live and work. 

 Computes allowed to experiment with equations. 

 Powerful tool to advance the “Theory of Dynamical 

Systems”. 

 1960s: Eduard Lorentz (American mathematician 

and meteorologist at MIT): simple model of 

convection rolls in the atmosphere. 

 Intuition of chaotic motion on a strange attractor. 

 He also showed that there is structure and order in 

chaotic motion. 

1950s: First simulations 



Lorentz studied meteorological prediction using Navier-

Stokes simplified equations: 

The Lorentz system 
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 3 variables: 
• x: rotation rate of a cylindrical mass of gas, 

• y: thermal gradient, 

• z: temperature variation. 

 3 Parameters:  
• : ratio between viscosity and thermal conductivity (Prandtl number), 

• R: temperature difference between top and bottom of cylinder (Rayleigh 

number), 

• b: ratio between width and height of the cylinder. 



 Starting from an initial condition (x0, y0, z0) by 

numerically integrating the equations we can plot the 

trajectory in the phase space (Lorentz’s Attractor). 

Lorentz’s Attractor 

 Lorentz found 

extreme 

sensitivity to 

initial conditions 

  impossibility 

of long-term 

meteorological 

predictions. 



 Ilya Prigogine (Belgium, born in Moscow, Nobel 

Prize in Chemistry 1977) 

 Thermodynamic systems far from equilibrium. 

 Discovered that, in chemical systems, the interplay 

of (external) input of energy and dissipation can 

lead to “self-organised” patterns. 

 Reverse the rule of maximization of entropy 

(second law of thermodynamics). 

Order within chaos and 

self-organization 

 Wide implications to biological systems and the evolution of 

life. 



One-dimensional  

spatio-temporal patterns 

Vanag et al Nature 2000 



Patterns in nature  
(source: wikipedia) 





H = 0 

C = 0 

 

H = Max 

C = 0  

H ≠ 0  

C ≠ 0 

 

Entropy (H) and Complexity (C) 

O. A. Rosso (2009) 



Newtonian physics has been extended three times:  

 

• First, with the use of the wave function in quantum 

mechanics. 

 

• Then, with the introduction of space-time in relativity. 

 

• And finally, with the recognition of indeterminism in 

nonlinear systems. 

 

Chaos is the third great revolution of 20th-century 

physics, after relativity and quantum theory. 

According to Prigogine 



 Arthur Winfee (American theoretical biologist –

born in St. Petersburg): Large communities of 

biological oscillators show a tendency to self-

organize in time –collective synchronization. 

In the 1960s: biological 

nonlinear oscillators 

In the 1960’s he did experiments trying to understand the 

effects of perturbations in biological clocks (circadian rhythms). 

 

What is the effect of an external perturbation on 

subsequent oscillations?  



 He studied the periodic emergence of a fruit fly that as a 24-

hour rhythmic emergency. 

 

 Using brief pulses of light, found that the periodic emergence of 

the flies was shifted, and the shift depended on the timing and 

the duration of the light pulse.  

 

 Also found that there is a critical timing and duration that results 

in no further periodic emergency (destroys the biological clock). 

 

 The work has wide implications, for example, for cardiac tissue: 

some cardiac failures are related to perturbed oscillations.  

Winfee work on perturbing 

biological oscillators 



 Robert May (Australian, 1936): population biology 

 "Simple mathematical models with very  

     complicated dynamics“, Nature (1976). 

The 1970s 

 Difference equations (“iterated maps”), even though 

simple and deterministic, can exhibit different types of 

dynamical behaviors, from stable points, to a 

bifurcating hierarchy of stable cycles, to apparently 

random fluctuations.  

)(1 tt xfx 
)1( )( xxrxf Example: 



Models of dynamical systems 

 Continuous-time 

ordinary differential 

equations (ODEs) 
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r = control parameter(s) 

Example: Lorentz model Example: Logistic map 

Discrete-time equations 

(iterated maps) 

r = (, r, b) 



The logistic map 
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“period-doubling” 

bifurcations to chaos 

)](1)[( )1( ixixrix 

Parameter r 

x(i) 

r=2.8, Initial condition: x(1) = 0.2 

Transient relaxation → long-term stability 

Transient 

dynamics  

→ stationary 

oscillations 

(regular or 

irregular) 



 In 1975, Mitchell Feigenbaum 

(American mathematical physicist), using 

a small HP-65 calculator, discovered the 

scaling law of the bifurcation points 

Universal route to chaos 
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 Then, he provided a mathematical proof (by using the 

“renormalization concept” –connecting to phase transitions in 

statistical physics). 

 Then, he showed that the same behavior, with the same 

mathematical constant, occurs within a wide class of functions, 

prior to the onset of chaos (universality). 

Very different systems (in chemistry, biology, physics, 

etc.) go to chaos in the same way, quantitatively. 



 The first magnetic card-programmable handheld 

calculator 

HP-65 calculator 

HP-65 in original hard 

case with manuals, 

software "Standard 

Pac" of magnetic 

cards, soft leather 

case, and charger 



 Benoit Mandelbrot (Polish-born, French 

and American mathematician  1924-

2010): “self-similarity” and fractal 

objects:  

 each part of the object is like the whole 

object but smaller. 

 

 Because of his access to IBM's 

computers, Mandelbrot was one of the 

first to use computer graphics to create 

and display fractal geometric images. 

The late 1970s 



 Are characterized by a “fractal” dimension that measures 

roughness (more in Module 3) 

Fractal objects 

Video: http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180 

Romanesco broccoli 

D=2.66 

Human lung 

D=2.97 
Coastline of Ireland 

D=1.22 



 Optical chaos: first observed in laser systems. 

In the 80’s: can we observe 

chaos experimentally? 

 

Time 

… 

… 

More latter about experiments 

with optical chaos in our lab. 
N. B. Abraham, OPN 1989 



 Ott, Grebogi and Yorke (1990) 

Unstable periodic orbits can be used for control: wisely 

chosen periodic kicks can maintain the system near the 

desired orbit. 

 

 Pyragas (1992) 

Control by using a continuous self-controlling feedback 

signal, whose intensity is practically zero when the system 

evolves close to the desired periodic orbit but increases 

when it drifts away. 

 

 

In the 90’: can we control 

chaotic dynamics? 

 



  Raj Roy and others (1994) 

Experimental demonstration of 

control of optical chaos 



The 1990s: synchronization of two 

chaotic systems 
Pecora and Carroll, PRL 1990 

Unidirectionaly coupled Lorenz systems: the ‘x’ 

variable of the response system is replaced by the 

‘x’ variable of the drive system. 

 Drive system  

 Response system  



 In the case of low dimensional chaotic attractors, is 

possible to break the system and extract the message 
(G. Perez y H. Cerdeira, PRL 1995) 

Interesting but … useful? 

Is the system secure? 

 Transmission of secure information 
(Cuomo–Oppenheim, PRL 1993) 



Different type of coupling and different 

types of synchronization 

•  Complete (CS): x1(t) = x2(t)     (identical systems)  

 

•  Phase(PS):  the phases of the oscillations are 

synchronized, but the amplitudes are not. 

 

•  Lag (LS):  x1(t+to) = x2(t)  

 

•  Generalized (GS):   x2(t) = f(x1(t))     (f depends on 

the strength of the coupling) 

 



Experimental observation with 

coupled lasers 
Fischer et al Phys. Rev. A 2000 



 Solution: 

Synchronization with time-delay 

Is it possible to anticipate/predict 

the evolution of a chaotic system?  

The solution is stable only for ‘small’ values of  (Voss, PRL 2001) 

𝑥 𝑡 = 𝑦(𝑡 −)  𝑥(𝑡 +) = 𝑦(𝑡)  



Experimental demonstration 

with electronic circuits 

M. Cizak et al, PRL 2003 



39 

I. Kanter et al, Nature Photonics  2010  

After processing the signal, ultra-fast generation of 

arbitrarily long sequences of random bits. 

In the last decade: can we  

exploit / use chaotic dynamics?  

An example from optical chaos 



 Laser spikes: intensity vs. time 

Dynamical systems in optics:  

Two examples from our lab 

 Neuronal spikes 

 Extreme pulses 

https://youtu.be/nltBQG_IIWQ 

 

 

 

 

 

 

Intensity time series 

Interested? TFGs available, contact us. 

https://youtu.be/nltBQG_IIWQ


From dynamical systems to 

complex systems 



 Interest moves from chaotic systems to complex systems 

(low vs. very large number of variables). 

 

 Networks (or graphs) of interconnected systems 

 

 Complexity science: dynamics of emergent properties 

• Epidemics 

• Rumor spreading 

• Transport networks 

• Financial crises 

• Brain diseases 

• Etc. 

End of 90’s - present 



Synchronization of a large 

number of coupled oscillators   

http://

www.y

outub

e.com

/watch

?v=D

D7YD

yF6dU

k 

 

http://www.youtube.com/watch?v=DD7YDyF6dUk
http://www.youtube.com/watch?v=DD7YDyF6dUk
http://www.youtube.com/watch?v=DD7YDyF6dUk
http://www.youtube.com/watch?v=DD7YDyF6dUk
http://www.youtube.com/watch?v=DD7YDyF6dUk
http://www.youtube.com/watch?v=DD7YDyF6dUk
http://www.youtube.com/watch?v=DD7YDyF6dUk
http://www.youtube.com/watch?v=DD7YDyF6dUk
http://www.youtube.com/watch?v=DD7YDyF6dUk


 Model of all-to-all coupled phase oscillators.  
 

 

 

K = coupling strength, i = stochastic term (noise)  

 

Describes the emergence of collective behavior (synchronization) 

How to quantify synchronization?       

With the order parameter: 
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Kuramoto model 

(Japanese physicist, 1975) 

r =0 incoherent state (oscillators are scattered in the unit circle) 

r =1 all oscillators are in phase (i=j  i,j) 



Synchronization transition as the 

coupling strength increases 

Strogatz 

Nature 2001 

video 

KuramotoModelPhaseLocking.ogv.360p.webm


 The Kuramoto model allows for deriving exact 

results (Steven Strogatz and others, late 90’).  
 

 

 

Synchronization transition 

Video: https://www.ted.com/talks/steven_strogatz_on_sync 



Network science 

Strogatz 

Nature 2001, 

The challenge: to understand how the interplay of 

structure and dynamics (of individual units) results 

in emergent collective behavior. 



Main feature of a network: the 

degree distribution 

Liu et al, Nature 2011 



Scientific coorperation: red 

FISES (A. Diaz-Guilera, UB)  



Electric power grid (N. Rubido 

PhD Thesis 2014) 



New York State electric power 

grid 

Generators and substations 

are shown as small blue bars.  

The lines connecting them 

are transmission lines and 

transformers. Line thickness 

and colour indicate the 

voltage level: red, 765 kV and 

500 kV; brown, 345 kV; 

green, 230 kV; grey, 138 kV 

and below. Pink dashed lines 

are transformers. 

Strogatz, Nature 2001 



Graph consisting of the pages of a web site and their 

mutual hyperlinks, which are directed. Communities 

are indicated by the colors (Fortunato, 2010) 



Nodes represent 

symbiotically 

connected species,  

such as plants and 

pollinators (Gao et 

al, Nature 2016) 

Interacting 

networks 

(example: 

friendship 

relations in 

Facebook and 

twitter) 



Transport networks 



The start of Network Theory: The 

Königsberg Bridge problem 

 
The problem: to 

devise a walk 

through the city that 

would cross each 

bridge once and only 

once. The starting 

and ending points of 

the walk need not be 

the same. 

By representing the network as a Graph (a set of “vertices” 

connected by a set of “edges”) Euler (1707-1783) proved 

that the problem has no solution.  



Brain functional network 

27/11/2016 

Eguiluz et al, PRL 2005 

Chavez et al, PRE 2008 



Nodes and links of the 

climate network 

57 



Eguiluz et al, PRL 2005 

Deza et al, Chaos 2013 

Donges et al, Chaos 2015 

Similarity measure (correlation, 

mutual information, etc.) 

Climate network 

Time series of a climate variable (air 

temperature, wind, precipitation, etc.) 

Threshold Winds & ocean currents 



Summary and take home 

message 

 The theory of dynamical systems allows to  

• understand  the dynamics of low-dimensional systems,  

• to uncover “order within chaos”,  

• universality features in the transition to chaos, and  

• provides tools for controlling chaotic behavior. 

 

 Complexity science is aimed to understand the emerging 

phenomena in large sets of interacting systems. 

 

 Both, dynamical systems and complexity science have 

multiple applications, and involve the work of mathematicians, 

physicists, biologists, computer scientists, engineers, etc. 



 Introduction to dynamical systems 

 Introduction to flows on the line  

 Solving equations with computer 

 Fixed points and linear stability 

 Feedback control: delay differential equations 

 

Outline 



 Continuous time: differential equations 
 

• Ordinary differential equations (ODEs). 

Example: damped oscillator 

 

 

• Partial differential equations (PDEs). 

Example: heat equation 

 

 Discrete time: difference equations or “iterated 

maps”. Example: the logistic map 

Types of dynamical systems 

x(i+1)=r x(i)[1-x(i)] 



ODEs can be written as first-

order differential equations  

 First example: harmonic oscillator 

 

 Second example: pendulum 

 

 

)(xfx 



Trajectory in the phase space 

 Given the initial conditions, x1(0) and x2(0), 

we predict the evolution of the system by 

solving the equations: x1(t) and x2(t). 

 x1(t) and x2(t) are solutions of the equations. 

 The evolution of 

the system can be 

represented as a 

trajectory in the 

phase space. 

 two-dimensional 

(2D) dynamical 

system. Key argument (Poincare): find out 

how the trajectories look like, without 

solving the equations explicitly. 



 f(x) linear: in the function f, x appears to first order only 

(no x2, x1x2, sin(x) etc.). Then, the behavior can be 

understood from the sum of its parts. 

 f(x) nonlinear: superposition principle fails! 

Classification of dynamical systems 

described by ODEs (I/II)  

)()( txfx 

 Example of linear system: harmonic oscillator 

In the right-hand-side x1 

and x2 appear to first 

power (no products etc.) 

 

 Example of nonlinear system: pendulum 

 



Classification of dynamical systems 

described by ODEs (II/II)  

)()( txfx 

 =0: deterministic. 

 0: stochastic (real life) –simplest case: additive noise. 

 x: vector with few variables (n<4): low dimensional. 

 x: vector with many variables: high dimensional. 

 f  does not depend on time: autonomous system. 

 f  depends on time: non-autonomous system. 



 3D system: to predict the future evolution we 

need to know the present state (t, x, dx/dt). 

Example of non-autonomous 

system: a forced oscillator 

 Can also be written as first-order ODE 

 



 A one-dimensional autonomous dynamical 

system described by a first-order ordinary 

differential equation 

 

 x  

 f does not depend on time 

So…what is a “flow on the line”? 



  

 

 

 

 

 

 

 

 

 

 

        

  

 

 

 

 

 

 

 

 

 

 

        

Harmonic 

oscillator 

Pendulum 

• Heat 

equation, 

• Maxwell 

equations 

• Schrodinger 

equation 

RC circuit 

Logistic 

population

grow 

• Navier-

Stokes 

(turbulence) 

N=1 N=2 N=3 N>>1 N= (PDEs 

         DDEs) 

Linear 

Nonlinear 
• Forced 

oscillator 

• Lorentz 

model 

• Kuramoto 

phase 

oscillators 

Summarizing 

Number of variables 

“flow on the line” 
PDEs=partial differential eqs. 

DDEs=delay differential eqs. 



 Introduction to dynamical systems 

 Introduction to flows on the line  

 Solving equations with computer 

 Fixed points and linear stability 

 Feedback control: delay differential equations 

 

Outline 



 Euler method 

Numerical integration 

 Euler second order 



 Fourth order (Runge-Kutta 1905) 

 Problem if t is too small: round-off errors 

(computers have finite accuracy). 





Example 1 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t
y
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)

%vector_field.m 

n=15; 

tpts = linspace(0,10,n);  

ypts = linspace(0,2,n); 

[t,y] = meshgrid(tpts,ypts); 

pt = ones(size(y)); 

py =  y.*(1-y); 

quiver(t,y,pt,py,1); 

xlim([0 10]), ylim([0 2]) 

• quiver(x,y,u,v,scale): plots 

arrows with components (u,v) 

at the location (x,y).  

 

• The length of the arrows is 

scale times the norm of the 

(u,v) vector. 

)1( yyy 

To plot the blue arrows: 



Numerical solution 
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t
y
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tspan = [0 10];  

yzero = 0.1;  

[t, y] =ode45(@myf,tspan,yzero); 

plot(t,y,'r*--'); xlabel t; ylabel y(t) 

)1( yyy  1.0)0( y

function yprime = myf(t,y) 

yprime = y.*(1-y); 

To plot the solution (in red): 

The solution is always tangent to the arrows 

 

Remember: HOLD to plot together the blue 

arrows & the trajectory. 



Example 2 

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5

t

y
(t

)

n=15; 

tpts = linspace(0,3,n);  

ypts = linspace(-1.5,1.5,n); 

[t,y] = meshgrid(tpts,ypts); 

pt = ones(size(y)); 

py = -y-5*exp(-t).*sin(5*t); 

quiver(t,y,pt,py,1); 

xlim ([0 3.2]), ylim([-1.5 1.5]) 

function yprime = myf(t,y) 

yprime = -y -5*exp(-t)*sin(5*t); 

tspan = [0 3];  

yzero = -0.5;  

[t, y] = ode45(@myf,tspan,yzero);  

plot(t,y,'kv--'); xlabel t; ylabel y(t) 

teyy t 5sin5  5.0)0( y



General form of a call to Ode45 



Class and homework 
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 Introduction to dynamical systems 

 Introduction to flows on the line  

 Solving equations with computer 

 Fixed points and linear stability 

 Feedback control: delay differential equations 

 

Outline 



Example 

 Starting from x0=/4, what is the long-term behavior (what 

happens when t?) 

 

 And for any arbitrary condition xo? 

 

 We look at the “phase portrait”: geometrically, picture of all 

possible trajectories (without solving the ODE analytically). 

 

 Imagine: x is the position of an imaginary particle restricted to 

move in the line, and dx/dt is its velocity. 

 

Analytical Solution: 



Imaginary particle moving in the 

horizontal axis 

x0 =/4 

x0 arbitrary 

Flow to the right when 

Flow to the left when 
0x

0x

0x “Fixed points” 

Two types of FPs: stable & unstable 



Fixed points 

Fixed points = equilibrium solutions 

 

 Stable (attractor or sink): nearby 

trajectories are attracted 

     and - 

 

 Unstable: nearby trajectories are 

repelled 

   0 and  2 

 



 Find the fixed points and classify their stability 

Example 1 



Example 2 



 N(t): size of the population of the species at time t 

Example 3: population model for 

single species (e.g., bacteria) 

 Simplest model (Thomas Malthus 1798): no migration, 

births and deaths are proportional to the size of the 

population 

Exponential grow! 



More realistic model: 

logistic equation 

 If N>K the population decreases 

 If N<K the population increases 

 To account for limited food (Verhulst 1838): 

 The carrying capacity of a biological species in an 

environment is the maximum population size of the species 

that the environment can sustain indefinitely, given the food, 

habitat, water, etc. 

 K = “carrying capacity” 



How does a population approach 

the carrying capacity? 

 Good model only for simple 

organisms that live in constant 

environments. 

 Exponential or sigmoid approach. 



And the human population? 

Source: wikipedia 

Hyperbolic grow ! 

 Technological advance 

 → increase in the carrying 

capacity of land for people  

→ demographic growth  

→ more people  

→ more potential inventors  

→ acceleration of 

technological advance 

→ accelerating growth of 

the carrying capacity… 



the perturbation  grows exponentially  

Linearization close to a 

fixed point 

the perturbation  decays exponentially  

Second-order terms can not be neglected and a 

nonlinear stability analysis is needed.  

 Bifurcation (more latter) 

 Characteristic time-scale 

The slope f’(x*) at the fixed point determines the stability 

 = tiny perturbation 

Taylor expansion 



Existence and uniqueness 

 Problem: f ’(0) infinite 

 When the solution of dx/dt = f(x) with x(0) = x0 exists and is 

unique? 

 Short answer: if f(x) is “well behaved”, then a solution exists 

and is unique.  

  “well behaved”? 

 f(x) and f ’(x) are both continuous on an interval of x-values 

and that x0 is a point in the interval. 

 Details: see Strogartz section 2.3. 



 Linear stability of the fixed points of  

Example 1 

 Stable:  and - 

 

 Unstable: 0,  2 

 



 Logistic equation 

Example 2 

 The two fixed points have 

the same characteristic 

time-scale: 

 



Good agreement with controlled 

population experiments 



Lack of oscillations 

 General observation: only 

sigmoidal or exponential 

behavior, the approach is 

monotonic, no oscillations 

Strong damping 

(over damped limit) 

Analogy: 

 To observe oscillations we need 

to keep the second derivative 
(weak damping). 



Stability of the fixed point x* 

when f ’(x*)=0? 

In all these systems: 

When f’(x*) = 0 

nothing can be 

concluded 

from the 

linearization 

but these plots 

allow to see 

what goes on. 



Potentials 

V(t) decreases along the trajectory. 

 Example: 

Two fixed points: x=1 and x=-1 

(Bistability).  



 Flows on the line = first-order ODE: dx/dt = f(x) 

 

 Fixed point solutions: f(x*) =0 

• stable if f´(x*) <0  

• unstable if f´(x*) >0 

• neutral (bifurcation point) if f´(x*) = 0 

 

 There are no periodic solutions; the approach to a fixed 

point is monotonic (sigmoidal or exponential). 

Summary 
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Class and homework 



 Introduction to dynamical systems 

 Introduction to flows on the line  

 Solving equations with computer 

 Fixed points and linear stability 

 Feedback control: delay differential 

equations 

 

Outline 



 Any system involving a feedback control will almost 

certainly involve time delays. 

 In a 2D system delayed feedback can reduce oscillations, 

but in a 1D system it can induce oscillations. 

 Example: 

Exception to no oscillations: 

 delay differential equations (DDEs) 

 Linear system 

 Infinite-dimensional system 

 Delay-induced oscillations. 



Example: population dynamics 

Delayed logistic equation  

 In a single-species population, the incorporation of a delay allows to 

explain the oscillations, without the predatory interaction of other species. 

The initial function is y=0.5 in -1<s<0 



 It is important for the crane to move payloads rapidly and 

smoothly. If the gantry moves too fast the payload may start 

to sway, and it is possible for the crane operator to lose 

control of the payload. 

Example: Container crane 

Delayed feedback control 



weakly damped oscillator 

Pendulum model for the crane,  

y represents the angle 

Feedback control 

Reduction of payload oscillations: why delayed feedback works? 

Near the equilibrium solution y=0: 

Small delay: 

The delay increases the damping. 

Therefore: the oscillations decay faster. 

(not first-order equation, 

without control payload 

oscillations are possible) 



 Small perturbation 

but 

 Large perturbation 



Example: Car following model 



Typical solution for two cars 

 Speed of the two cars  Distance between the two cars 

The lead vehicle reduces its speed of 80 km/h to 60 

km/h and then accelerates back to its original 

speed. The initial spacing between vehicles is 10 m. 



Alcohol effect 

A sober driver needs about 1 s in order to start 

breaking in view of an obstacle.  

With 0.5 g/l alcohol in blood (2 glasses of wine), this 

reaction time is estimated to be about 1.5 s. 

 oscillations near the stable equilibrium increase. 



Solving DDEs 

function solve_delay1 

tau = 1; 

ic = [0.5]; 

tspan = [0 100]; 

h = 1.8; 

sol = dde23(@f,tau,ic,tspan); 

plot(sol.x,sol.y(1,:),'r-') 

function v=f(t,y,Z) 

v = [h*y(1).*(1-Z(1))]; 

end 

end 
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Example 1: Delayed logistic equation  

ic =constant 

initial 

function 



Solving DDEs 
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function solve_delay2 

tau=9; 

ic = [35;10]; 

tspan = [0 250]; 

h = 10; 

sol = dde23(@f,tau,ic,tspan); 

plot(sol.x,sol.y(1,:),'r-',sol.x,sol.y(2,:),'b--') 

function v=f(t,y,Z) 

v = [y(1)*(2*(1-y(1)/50)-y(2)/(y(1)+40))-h 

    y(2)*(-3+6*Z(1)/(Z(1)+40))]; 

end 

end 

Example 2: Prey (x) and predator (y) model 
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