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Outline of the first block

 Introduction

 Univariate analysis

 Bivariate analysis

 Multivariate analysis



 Return maps

 Distribution of data values

 Autocorrelation and Fourier analysis

 Stochastic models and surrogates

 Attractor reconstruction, Lyapunov exponents, and fractal 

dimension

 Symbolic methods 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

 Instantaneous phase and amplitude

Methods of time series analysis
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X = {x1, x2, … xN}

 First step: Look at the data. 

 Examine simple properties: 

‒ Return map: plot of xi vs. xi+

‒ Distribution of data values (at 

least 10 data points per bin) 

‒ Auto-correlation

‒ Fourier spectrum

To begin with the analysis of a time series
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Bi-decadal oxygen isotope data set d18O (proxy for 

palaeotemperature) from Greenland Ice Sheet Project 

Two (GISP2) for the last 10,000 years with 500 values 

given at 20 year intervals.

First example of a geophysical time series

5
A. Witt and B. D. Malamud, Surv. Geophys. 34, 541 (2013).



Discharge of the Elkhorn river (at Waterloo, Nebraska, 

USA) sampled daily for the period from 01 January 

1929 to 30 December 2001.

Second example

6
A. Witt and B. D. Malamud, Surv. Geophys. 34, 541 (2013).



The geomagnetic auroral electrojet (AE) index sampled 

per minute for the 24 h period of 01 February 1978 and 

the differenced index:

Third example

7
A. Witt and B. D. Malamud, Surv. Geophys. 34, 541 (2013).



 Mean (expected value of X):

 Variance: 2 =Var (X) = E[(X-)2]

 Skewness: “measures” the asymmetry of the distribution

 Kurtosis: measures the "tailedness“ of the distribution. For a 

normal distribution K=3.

 Coefficient of variation: normalized measure of the width of 

the distribution.          Cv =  / ||

How to characterize the 

distribution of data values? 

8

S = E[Z3]

K = E[Z4]

)(tx



9

Press WH et al. Numerical recipes: 

the art of scientific computing 

(Cambridge University Press)

 K<3: the distribution produces fewer 

and less extreme outliers than the 

normal distribution. An example is the 

uniform distribution.

 K=3: Normal Gaussian

 K>3: the tail approaches zero more 

slowly than a Gaussian, and therefore 

produces more outliers than the normal 

distribution. An example is the Laplace 

distribution.



Tailed distribution? “Extreme values”

10

Bonatto et al. Phys. Rev. Lett. 107, 053901 (2011)

Rogue wave if the pulse 

height is: I > I+ 8

Example: optical rogue waves



“Dragon kings”: extreme values or “outliers”?

11

Hugo L. D. de S. Cavalcante et al, Phys. Rev. Lett. 111, 198701 (2013)



Time

Low current (noise?)

High current (chaos?)

Example: intensity emitted by a diode laser with feedback, as 

the pump current increases (video seen in previous class).

Intermediate: spikes

Time

Time



Can we distinguish quantitatively the three regimes?

We recorded a large number of time series varying two experimental 

parameters: feedback strength and laser current.

13

Panozzo et al, Chaos 27, 114315 (2017)

-1.5

Second method: Analyze the 

distribution of intensity values

If K in 3-3.3 (Gaussian dist.)  Noise

Else

If  increases with the pump current 

(keeping feedback constant)  Spikes

Else  Chaos

First method: Count the 

number of “spikes events” (# 

of times the intensity falls 

below a threshold). 

Problem: chaos and noise 

can not be well distinguished.

spikes

noise

chaos

http://aip.scitation.org/doi/abs/10.1063/1.4986441?ai=1gvoi&mi=3ricys&af=R


 The return map allows us to see 

if x(t) and x(t+) are “correlated”.

 How to quantify?

 The autocorrelation function

 By definition: C(0)=1

Autocorrelation function (ACF)
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For two geophysical time series

 C()=0 indicates that x(t) and x(t+) are uncorrelated.

 C()>0 indicates persistence: large values tend to follow large 

ones, and small values tend to follow small ones, on average 

more of the time than if the time series were uncorrelated.

 C()<0 indicates anti-persistence: large values tend to follow 

small ones and small values large ones.



 After processing the time series to remove its mean value and 

to normalize to  [xi=(xi-)/]: =0, =1

 For a stationary process  and  are constant in time

 C() = C(-)

 Correlogram: plot of C() vs. .

 Matlab: corr(A). A is a matrix with two columns: x(t) and x(t+). 

Returns: 

Autocorrelation function (ACF)
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Back to the three examples of geophysical time series

16

A. Witt and B. D. Malamud, Surv. Geophys. 34, 541 (2013).

Slow decay: 

long-range

correlations.

Rapid decay: 

short-range

correlations.



17Source: wikipedia

Problem with the ACF: it only detects linear correlations 

between two data points  it is important to analyze 

nonlinear correlations and higher order correlations.

x(t)

x
(t

+
)



3.1 Generate a time series with the map: 

and calculate the ACF. 

3.3 Plot the return map x(i+1) vs. x(i). Are x(i+1) and x(i) correlated?

3.4 Generate a time series with an autoregressive process of order 1, AR(1),    

and calculate the ACF.

18

2)( 21)1( ixix 

Hands-on exercise 2: ACF

Gaussian white 

noise (=0, =1)
)()( )1( iixix  

-1< < 1



Describes a time series in terms of a linear superposition of 

oscillatory components.

Fourier analysis

Example: climatic 

time series have 

oscillations with a 

wide range of time 

scales.

Adapted from M. Ghil (2002).



Examples

20

Sum of the 

first four 

terms of the 

Fourier 

series of a 

square 

wave.

The sum of 

many terms 

of the 

Fourier 

series gives 

a triangular 

signal.

The Fourier spectrum of a 

sinusoidal signal is the 

“Delta” function. 

Which is the Fourier 

spectrum of a short pulse 

(localized in time)?



f(t) F(w)

Short

pulse

Long

pulse

(This is the essence 

of the Uncertainty 

Principle of 

Quantum 

Mechanics)

w

w

w

t

t

t

The shorter the pulse, 

the broader the Fourier 

spectrum.

If f(t) is Gaussian  F(w) is Gaussian

Source: Prof. R. Trebino lectures, Georgia Tech, USA

One cannot 

simultaneously 

sharply localize a 

signal in both, the 

time domain and 

the frequency 

domain.



Superposition of oscillations with different frequencies: 

depending on their relative phases, the result is a short 

pulse or noisy fluctuations

Time

Intensity vs. time

Time

F
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Source: Prof. R. Trebino lectures, Georgia Tech, USA



 x = {x0, x1, … xN-1} is described as a superposition of waves.

 The DFT of x is the set of complex numbers 

X = {X0, X1, … XN-1} 

associated to the frequencies fk= k/(N) with  = sampling time 

(time interval between xi and xi+1) and N = # of data points.

 Important property: If x is a real signal: XK = (XN-k)*

 Another important property: The Fourier transform is a linear

transformation. If {XK} is the DFT of x= {x0, x1, … } and {YK} is 

the DFT of y= {y0, y1, … } , then the DFT of (ax + by) is 

{aXK+bYK} .

Discrete Fourier Transform 

23



 DFT is the set of complex numbers, X = {X0, X1, … XN-1} 

 The PSD is a set of real numbers that give the “strength” of 

each frequency component:

PSD= {|X0|
2, |X1|

2, …, |XN/2|
2} 

 Wiener-Khinchin theorem: if the time series is stationary the 

PSD is the Fourier transform of the autocorrelation function.

Power spectral density (PSD)

24



 Fast Fourier Transform (FFT) algorithm applied to 

x= {x0, x1, … xN-1} returns X = {X0, X1, … XN-1} 

 It is faster if N=2m.

 The order of the components of X depends on the 

implementation.

 Matlab implementation:

Fast Fourier Transform (FFT)

25

x=datos(:,1);

n = length(x)

dt=1.

df=1./(dt*n);

f=df.*[1:1:(n/2)-1];

z=fft(x);

q=z.*conj(z);
q=q(2:n/2);

q=q./max(q);

semilogy(f,q)

x is a real signal: XK = (XN-k)*

 disregard second half.

q(0): dc value –we also 

disregard.

fk= k/(N)df=1/(N) 



 Plot the time series & estimate 

the mean inter-spike-interval.

 Calculate the FFT. Which is the 

frequency of the main peak?

 Verify fmax = 1/<ISI>

Hands-on exercise 3: Fourier spectrum of the 

intensity of the laser with optical feedback.

26<ISI>1000/14 fmax 0.014

Lower part of the spectrum

Lext



Warning! The importance of the sampling time: some 

examples of time series with higher temporal resolution

M. Sciamanna (PhD Thesis 2004).

Langley et al, Opt. Lett. 19, 2137 (1994).

c

Lext2


If Lext = 1 m 

  = 6.7 ns

The laser intensity after a drop: steps 

of duration  with relaxation oscillations

Time

Three main frequencies:

- relaxation oscillations fro
- the “steps”: external cavity frequency 1/

- the “drops”: fLFF

Fourier spectra

fro

1/
fLFF

1/fLFF



Can we infer the length of the external cavity?

28

Frequency in units of 1/dt.

Let’s assume dt=1 ns 

 f is measured in GHz. 

f = 0.1333 GHz (= 133 MHz)

 = 1/f = 7.5 ns. Lext = c /2 = 1.125 m

c

Lext2


Dividing the time-series in 

5 non-overlapping 

segments and averaging 

the PSD in each segment.
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Spectrogram: Fourier spectrum as a function of time, 

or as a function of a control parameter.

“Solitary” laser (no feedback) Laser with optical feedback



 What is it?

 ENSO: El Niño / La 

Niña-Southern

Oscillation.

 Nino 3.4: sea surface 

temperature (SST) 

anomaly, averaged 

in a geographical 

rectangular region, 

and monthly 

averaged.

Hands-on exercise 4: analysis of the index Nino3.4

30

SST anomaly during a La Niña event (Nov. 2007)

SST anomaly during a El Niño event (Nov. 2015)



Hands-on exercise 4: analysis of el Niño index 3.4

31

 ENSO is the most important climatic phenomena on the planet.

 It occurs with  3-6 years periodicity. 

 Variations in the surface temperature of the tropical eastern 

Pacific Ocean (warming: El Niño, cooling: La Niña) 

 Variations in the air surface pressure in the tropical western 

Pacific (the Southern Oscillation). 

 These two variations are coupled: 

• El Niño (ocean warming)  -- high air surface pressure,

• La Niña (ocean cooling)   -- low air surface pressure.

 Download data from 
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.anom.data

In the period 1870-2020: time series with 1800 data points.

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.anom.data


4.1 Plot the time series.

4.2 Plot the return map with =1 month, 1 year, 4 years.

4.3 Plot the distribution of data values.

4.4 Calculate , , S, and K. 

4.5 Calculate the ACF.

4.6 Calculate the PSD.

4.7 Compare with the ACF & PSD of Gaussian white noise.

Hands-on exercise 4: analysis of el Niño index 3.4

32
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 = -0.0987

 = 0.7713

S = 0.4547

K = 3.4132



ACF El Niño3.4 index
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Gaussian white noise is an iid

process: the values are independent 

(no memory) and identically 

distributed.



PSD of El Niño3.4 index 

35

X=nino3.4(:,1); 

z=fft(x);

q=z.*conj(z);

ndats = length(x)

dt=1./12; % (SAMPLING 

TIME IN UNITS OF YEARS)

df=1./(ndats*dt);

f=df.*[1:(ndats/2)-1];

q=q(2:ndats/2);

q=q./max(q);

semilogy(f,q)

Are these peaks 

“significant”?

For Gaussian white noise: C()=() 

 PSD is flat (all frequencies have 

the same contribution).

(Main peak T=2.7 years)



Verification of the Wiener-Khinchin theorem: if the time 

series is stationary PSD is the Fourier transform of ACF, 

and the inverse Fourier transform of PSD is ACF.

36

plot(acf,'k')

hold

z=fft(x);

q=z.*conj(z);

w=ifft(q);

w=w(1:ndats/2);

plot(w/max(w),'r')



 Real observed time series. 

 Generate an ensemble of 

“surrogate” time series that are 

both “similar“ to the original and 

also consistent with the specific 

null hypothesis (NH) that we 

want to test. 

 Measure an statistical property: 

“d” in the original series and “s(i)” 

in the ensemble time series.

 Is “d” consistent with the 

distribution of “s(i)” values? 

− No! we reject the NH.

− Yes! we “fail to reject” the NH. 

Significance analysis: the method of surrogate data

M. Small, Applied Nonlinear Time 

Series Analysis (World Scientific, 2005)



p value

38

Warning: the p-value only measures the compatibility of an 

observation with a hypothesis, not the truth of the hypothesis.

Altman and Krzywinski, Interpreting P values. Nature Methods 14, 213 (2017).



G. Lancaster et al, “Surrogate data for hypothesis testing of physical systems”, 

Physics Reports 748, 1 (2018).

Surrogate test for nonlinearity

39

A: Rossler with 

a = 0.165, b = 0.2 

and c = 10

B: High-order (linear) autoregressive process

A proper surrogate test detects nonlinearity in 

A (reject NH) but not in B (fail to reject NH).



Examples of applications:
- Stochastic resonance in bistable systems

- Coherence resonance in excitable systems
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In the presence of noise a particle 

with switch back and forth (stochastic 

motion).

The average “residence time” in each 

well (Kramer’s time) is  eV/D with D 

being the strength of the noise.

An external periodic force moves the 

potential back and forth. 

An optimal level of noise can 

“synchronize” the switching of the 

particle with the tilting of the potential.

Gammaitoni et al, Reviews of Modern Physics 70, 223 (1998).

Stochastic resonance in a bistable system: a classical 

example of the nontrivial interplay of noise and nonlinearity.



Bistable system with sinusoidal forcing and noise

42

Varying ; D constant



Time

Varying D;  constant

D

Time

x(t)

Gammaitoni et al, Reviews of Modern Physics 70, 223 (1998).



Quantification of stochastic resonance with spectral analysis

43

 Phase-averaged power spectral 

density: average over many 

realizations of the noise and average 

over the input initial phase .

 Signal to noise ratio at 

SNR()=

Noise strength, D

Gammaitoni et al, Reviews of Modern Physics 70, 223 (1998).



Quantification of stochastic resonance 

with the distribution of residence times



44

Strength of the nth peak: area under the peak

Number of 

switching 

times

D

Gammaitoni et al, Reviews of Modern Physics 70, 223 (1998).



The SR phenomenon has been observed experimentally 

in many nonlinear systems. Two examples from in lasers: 

45

Time (10 s/division)

Temporal behavior of the polarized 

laser intensity in the presence of a 

current modulation, increasing the 

input noise from top to bottom.

Giacomelli et al, Phys. Rev. Lett. 82, 675 (1999)

Time traces of the laser output 

intensity for a fixed noise level and 

increasing forcing frequency 0.4 

MHz (a), 1.1 MHz (b), and 1.8 MHz

Marino et al, Phys. Rev. Lett. 88, 040601 (2002)



 High nonlinear response to a 

perturbation: 

─ Below a threshold, small 

response.

─ Above the threshold, rapid 

and large response.

 Refractory period: cannot 

support another event until a 

certain amount of time has 

passed 

Excitable systems

46

 Examples: neuronal spikes and cardiac beats.

B. Lindner et. al. Phys. Rep., 392:321, 2004.



Fitz Hugh–Nagumo

model: classical 

example of an 

excitable system.

Effect of noise in an excitable system: coherence resonance. 

47

ACF

Pikovsky and Kurths, Phys. Rev. Lett. 78, 775 (1997)

D

The system shows maximum regularity (minimum disorder) for an 

optimal level of noise.

Excitable behavior for

=0.01 and a =1.05.



 The correlation time

 Coefficient of variation of the distribution of inter-spike-intervals 

Cv=/

How to quantify coherence resonance?

48

c solid

Cv dashed 

Pikovsky and Kurths, Phys. Rev. Lett. 78, 775 (1997)



Coherence resonance has been observed in many 

excitable systems, including lasers.

49

Temporal behavior of the laser 

intensity for increasing input noise 

amplitude. The horizontal scale is 

100 ns/div. The vertical scale is the 

same for the three plots.

Tredicce et al, Phys. Rev. Lett. 84, 3298 (2000).

Cv =  /T

T

Martinez Avila et al, 

Phys. Rev. Lett. 93, 144101 (2004).



 Return maps

 Distribution of data values

 Correlation and Fourier analysis

 Stochastic models and surrogates

 Attractor reconstruction, Lyapunov exponents, and fractal 

dimension

 Symbolic methods 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

 Instantaneous phase and amplitude

Methods of time series analysis
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 Real systems are in general high-dimensional and we can 

only measure a few (hopefully relevant) variables.

 Models are too complex and have many parameters: 

reconstructing the phase space may allow to understand 

the effect of different parameters.

51

Why we want to reconstruct the phase space of a system 

from an observed (scalar) time series?

Example: the intensity emitted by a diode laser with optical feedback



A popular time series: monthly mean total sunspot number

52http://sidc.oma.be/silso/infosnmtot
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lynx abundances from six regions in Canada

Reconstructed attractor obtained by 

spatially averaging all regional lynx 

data and embedding the resulting 

time-series w(t) using lagged 

coordinates, w(t) versus w(t+) versus 

w(t+6) after filtering and interpolating.



Attractor reconstruction: “embed” the time series in a phase-space 

of dimension d using delay  coordinates

54

How to identify (and quantify) chaos in observed data? 

Observed time series S = {s(1), s(2), … s(t) … }

Adapted from U. Parlitz (Gottingen)



Reconstruction using delay coordinates

55

A problem: how to chose the embedding parameters 

(lag , dimension d)

Bradley and Kantz, CHAOS 25, 097610 (2015)



  is chosen to maximize the spread of the data in phase 

space: the first zero of the autocorrelation function (or where 

|C()| is minimum).

 d is often estimated with the false nearest neighbors 

technique that examines how close points in phase space 

remain close as the dimension is increased. 

 Points that do not remain close are ‘false’ neighbors.

 The number of false neighbors decreases as the embedding 

dimension is increased. 

 The first dimension for which the number of false neighbors 

decreases below a threshold provides the estimated d.

How to chose the lag  and the dimension d

56

After reconstructing the attractor, we can characterize it by 

the fractal dimension and the Lyapunov exponent.



Example: 2D representation of a human ECG signal

57

H. Kantz and T. Schreiber, Cambridge University Press 2003



Hands-on exercise 5: 

5.1 Reconstruct the attractor from the laser intensity time 

series

58

=15
=50



Hands-on exercise 5: 

5.2 Reconstruct  the attractor of El Niño index

59

Next 0: =33



Hands-on exercise 5: 

5.3 Reconstruct the attractor of the monthly mean total 

sunspot number.

60

 Down load data set 

from 

http://sidc.oma.be/silso

/infosnmtot

 Plot and analyze the 

4th column of 

SN_m_tot_V2.0.txt



 A stable fixed point has negative s (since perturbations 

in any direction die out)

 An attracting limit cycle has one zero  and negative s

 A chaotic attractor as at least one positive .

61

Adapted from U. Parlitz (Gottingen)

Lyapunov exponents: measure how fast neighboring 

trajectories diverge.



 Initial distance

 Final distance

 Local exponential grow

 The rate of grow is averaged over the attractor, 

which gives max

Steps to compute the maximum LE

62

A very popular method for detecting 

chaos in experimental time series.



On the interpretation of the maximum Lyapunov

exponent: a word of warning! 

63

 The algorithm returns  in the fastest expansion direction.

 The algorithm always returns a positive number!

 This is a main problem when computing the LE of noisy 

data.

Every time series analysis algorithm returns a number of any 

time series. But is it useful?

Further reading: 

F. Mitschke and M. Damming, Chaos vs. noise in experimental data, 

Int. J. Bif. Chaos 3, 693 (1993)



 Example: the fractal dimension of a coastline quantifies how 

the number of scaled measuring sticks required to measure 

the coastline changes with the scale applied to the stick.

Fractal dimension

64

 Fractal dimension:

Source: Wikipedia

→



Application of fractal analysis

65

The fractal dimension of the blood vessels in the normal 

human retina is about 1.7 while it tends to increase with 

the level of diabetic retinopathy.

P. Amil et al., PLoS ONE 14, e0220132 (2019).



 Another very popular method for detecting chaos 

in real-world data.

Grassberger-Procaccia correlation dimension algorithm

66

Further reading:

P. Grassberger and I. Procaccia, "Measuring the Strangeness of Strange Attractors". Physica

D vol. 9, pp.189, 1983.

L. S. Liebovitch and T. Toth, “A fast algorithm to determine fractal dimensions by box 

counting,”  Physics Letters A, vol. 141, pp. 386, 1989.

 Fractal dimension (box counting dimension):

 Problem: for time-series analysis, D0 does not distinguish 

between frequently and unfrequently visited boxes.

 An alternative: the correlation dimension, based on 

calculating  the number of pairs of points with distance 

between them < .



 Return maps

 Distribution of data values

 Correlation and Fourier analysis

 Stochastic models and surrogates

 Attractor reconstruction, Lyapunov exponents, and fractal 

dimension

 Symbolic methods 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

 Instantaneous phase and amplitude

Methods of time series analysis
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Laser spikes

Time (s)

68

Can lasers mimic real neurons?

Time (ms)

Neuronal spikes

 Are there statistical similarities? 

 A popular technique: define spike times via “threshold 

crossings” and analyze the statistical properties of the inter-

spike-intervals (ISIs). Data compression!

 Results should be robust to small variations of the threshold.



Another way to define events for “compressing” 

the data: the Poincare section

69H. Kantz and T. Schreiber, Cambridge University Press 2003

C. Masoller et al, Phys. Lett. A 167, 185 (1992).

X, Y when the Z=0

Example of 

a chaotic 

attractor



A third way to define events: analyze only the extreme values

70

Lorenz created a Poincaré plot by plotting the relative 

maximum value of the z value, against the previous one. 

He found that when the maximum z value is above a certain 

value, the system will switch to the other lobe. 

E. N. Lorenz, "Deterministic nonperiodic flow". Journal of the 

Atmospheric Sciences 20, 130 (1963). 



A. Longtin et al Phys. Rev. Lett. (1991)

Experimental data when the laser 

current is modulated with a 

sinusoidal signal of period T0.

2T0 4T0

71

Back to the comparison of neuronal and optical spikes: 

inspection of the distribution of inter-spike-intervals

A. Aragoneses et al Optics Express (2014) 



A. Longtin, Int. J. Bif. Chaos (1993)

Laser Neuron

M. Giudici et al Phys. Rev. E (1997)

A. Aragoneses et al Optics Express (2014)

Return maps of the inter-spike-intervals

Ti

Ti+1

HOW TO INDENTIFY SIMILAR TEMPORAL ORDER? 

MORE/LESS EXPRESSED PATTERNS?



 The time series {x1, x2, x3, …} is transformed (using an 

appropriated rule) into a sequence of symbols {s1, s2, …} 

 Symbols are taken from an “alphabet” of possible symbols.

 Then consider “blocks” of D symbols (“patterns” or “words”).

 All the possible words form the “dictionary”.

 Then analyze the “language” of the sequence of words

- the probabilities of the words,

- missing/forbidden words, 

- transition probabilities, 

- information measures (entropy, etc).

Symbolic analysis
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 if xi > xth  si = 0; else si =1

transforms a time series into a sequence of 0s and 1s, e.g., 

{011100001011111…}

 Considering “blocks” of D letters gives the sequence of 

words. Example, with D=3:

{011   100    001    011   111 …}

 The number of words (patterns) grows as 2D

 More thresholds allow for more letters in the “alphabet” 

(and more words in the dictionary). Example: 

if xi > xth1  si = 0; 

else if xi < xth2  si =2; 

else (xth2 <x i < xth1)  si =1. 

Threshold transformation: “partition” of the phase space
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 Consider a time series x(t)={…xi, xi+1, xi+2, …}

 Which are the possible order relations among three 

consecutive data points? 

Ordinal analysis: threshold-less method to define symbols 

Bandt and Pompe, Phys. Rev. Lett. 88, 174102 (2002)

 Count how many times each “ordinal pattern” appears.

 Advantages: allows to identify temporal structures & is 

robust to noise.

 Drawback: information about actual data values is lost.



Analysis of D=3 patterns in spike sequences

021 012

012

021 

102

120

201

210

120



The number of ordinal patterns increases as D! 

 A problem for short datasets

 How to select optimal D? 

it depends on:

─ The length of the data

─ The length of the correlations



Threshold transformation: 

if xi > xth  si = 0; else si =1

 Advantage: keeps information 

about the magnitude of the 

values.

 Drawback: how to select an 

adequate threshold (“partition” 

of the phase space).

 # of symbols: 2D

Ordinal transformation: 

if xi > xi-1  si = 0; else si =1

 Advantage: no need of 

threshold; keeps information 

about the temporal order in 

the sequence of values

 Drawback: no information 

about the actual data values

 # of symbols: D!

78

Comparison between the two rules to define symbols

2 4 6 8 10
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Number 

of 

symbols



 Null hypothesis: 

pi = p = 1/D! for all i = 1 … D!

 If at least one probability is not in the 

interval p  3 with

and N the number of ordinal patterns:

We reject the NH with 99.74% 

confidence level.

 Else

We fail to reject the NH with 

99.74% confidence level.

Are the D! ordinal patterns equally probable?

79

Npp /)1( 



Example: intensity pulses emitted by a chaotic laser

80

N. Martinez Alvarez et al, Eur. Phys. J. Spec. Top. 226, 1971 (2017).



 Example: climatological data (monthly sampled)

− Consecutive months:

− Consecutive years:

 Varying  = varying temporal resolution (sampling time)

How to detect longer temporal correlations? 

)...]24( ),...12( ),...([...  txtxtx iii

)...]2( ),1( ),([...  txtxtx iii

 Solution: a lag  allows considering long time-scales without 

having to use words of many letters

81

)...]5( ),4(),3(),2(),1( ),( [...  txtxtxtxtxtx

),...]4(),2(),( [...  txtxtx

 Problem: number of patterns increases as D!. 



82

Y. Zou, R.V. Donner, N. Marwan et al. / Physics Reports 787 (2019) 1–97

What to do if two 

values are exactly 

equal?

Which is the 

pattern?

Several possible 

solutions, a 

simple one is to 

add a very small 

amount of noise:

x(t) = x(t) + .



Logistic map
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Normal bifurcation diagram Ordinal bifurcation diagram

“normal” and “ordinal” bifurcation diagram of the 

Logistic map with D=3

Xi

Map parameter Map parameter, r

Pattern 210 is always forbidden; 

pattern 012 is more frequently 

expressed as r increases
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Software

85

Python and Matlab codes for computing 

the ordinal pattern index are available 

here: U. Parlitz et al. Computers in 

Biology and Medicine 42, 319 (2012) 

World length (wl): 4

Lag = 3 (skip 2 points)

Result: 

indcs=3

http://www.fisica.edu.uy/~cris/Parlitz_2012.pdf


 Test that the program works with some examples.

 Calculate the probabilities of the 6 ordinal patterns of length D=3 for the 

logistic map with r=3.99.

 Calculate the ordinal bifurcation diagram: r in (3.5,4) with D=3.

 For r=3.99 generate two trajectories starting from very similar initial conditions 

and calculate the sequence of ordinal patterns and their distribution.

Hands-on exercise 6: ordinal analysis of the logistic map

86

2

5

4
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r=3.99, x(1)-y(1)=1e-4

In the periodic windows the 

probabilities depend on the 

initial conditions.



Examples of application
-cardiac signals

-lasers & neurons 



ECG signals: analysis of time series of inter-beat intervals

89



Classifying ECG signals according to ordinal probabilities

90

 Analysis of raw data (statistics of ordinal patterns is almost 

unaffected by a few extreme values)

 The probabilities are normalized with respect to the 

smallest and the largest value occurring in the data set.

U. Parlitz et al. Computers in Biology and Medicine 42, 319 (2012) 

http://www.fisica.edu.uy/~cris/Parlitz_2012.pdf


Laser spikes: analysis of inter-spike intervals

210012



More probable pattern varies with the laser pump current 

75,000 – 880,000 spikes

Gray region: probabilities 

consistent with 1/6

A. Aragoneses et al, Sci. Rep. 4, 4696 (2014)



0.17

0.19

0.15

The variation is not captured by linear correlation analysis

Laser current

Laser current (mA)
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Circle map

Minimal model? A modified circle map

iiiX   1

Same “clusters” & same hierarchical structure

 = natural frequency

forcing frequency

K = forcing amplitude

D = noise strength
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Laser current
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A. Aragoneses et al, Sci. Rep. 4, 4696 (2014)



0 Modulation amplitude 4%
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 Spike correlations in sensory neurons (Neiman and Russell, PRE 2005)

 Can we test its validity as a minimal model for the laser spikes? 

Connection with neurons: the circle map 

describes many excitable systems

Map parameter K

0.1

0.2

Pi
Circle map

Laser spikes



Neuron model with 

Gaussian white noise and 

weak sinusoidal input: 

spikes are noise-induced

Comparing with synthetic neuronal spikes: good agreement 

Modulation amplitude

Empirical laser data

Modulation amplitude

Synthetic spikes
Pi

J. M. Aparicio-Reinoso et al, Phys. Rev. E 94, 032218 (2016)



How to quantify unpredictability 

and complexity?



 Return maps

 Distribution of data values

 Correlation and Fourier analysis

 Stochastic models and surrogates

 Attractor reconstruction: Lyapunov exponents and fractal 

dimensions

 Symbolic methods 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

 Instantaneous phase and amplitude

Methods of time-series analysis
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 The time-series is described by a set of probabilities

 Shannon entropy:

 Interpretation: “quantity of surprise one should feel upon 

reading the result of a measurement” Faser and Swinney (1986)

 Simple example: a random variable takes values 0 or 1 with 

probabilities: p(0) = p, p(1) = 1 − p.

 H = −p ln(p) − (1 − p) ln(1 − p).

 p=0.5: Maximum unpredictability.

Information measure: Shannon entropy
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 Entropy computed from ordinal probabilities.

 Number of probabilities = # of ordinal patterns 

(D!)

Permutation entropy

100

1
1
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Permutation entropy (PE) of the Logistic map

Bandt and Pompe

Phys. Rev. Lett.  2002

101

Entropy per symbol:

x(i+1)=r x(i)[1-x(i)] 

Robust to noise

The entropy measures the degree of unpredictability or disorder. 

How to quantify Complexity?



H = 0

C = 0

H ≠ 0

C ≠ 0

H = 1

C = 0 

Order DisorderChaos

We would like to find a quantity “C” that measures complexity, 

as the entropy, “H”, measures unpredictability, and, for low-

dimensional systems, the Lyapunov exponent measures chaos.

Source: O. A. Rosso



Feldman, McTague and Crutchfield, Chaos 2008

“A useful complexity measure needs to do more

than satisfy the boundary conditions of vanishing

in the high- and low-entropy limits.”

“Maximum complexity occurs in the region

between the system’s perfectly ordered state

and the perfectly disordered one.”
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Information measures

Assuming that we know the set of probabilities P=[pi, i=1,Nbin] 

that characterizes a time series, several information measures 

have been proposed, a few popular ones are:

Shannon entropy

Tsallis entropy

Renyi entropy
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where                    and Pe is the equilibrium probability 

distribution (that maximizes the information measure).

Example: if I[P] = Shannon entropy

then Pe = [pi=1/Nbin for i=1,Nbin]

and Imax = ln(Nbin)

][max ePII 

1][0  PH

Normalization



Measures the “distance“ from P to the equilibrium 

distribution, Pe

where Qo is a normalization constant such that 1][0  PQ

 ePPDQPQ ,][ 0

Disequilibrium Q
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Distance between two distributions P and Pe

Read more: S-H Cha: Comprehensive Survey on Distance/Similarity Measures 

between Probability Density Functions,  Int. J of. Math. Models and Meth. 1, 300 (2007)

Euclidean

Kullback–Leibler divergence

(relative entropy)

Jensen divergence
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http://www.fisica.edu.uy/~cris/teaching/Cha_pdf_distances_2007.pdf


A family of complexity measures 

can be defined as:

where

A = S, T, R (Shannon, Tsallis, Renyi)

B = E, K, J (Euclidean, Kullback, Jensen)

][][][ PQPHPC BA 

][][][ PQPHPC JSMPR 

][][][ PQPHPC ESLMC  Lopez-Ruiz, Mancini & Calbet, Phys. Lett. A (1995).

Anteneodo & Plastino, Phys. Lett. A (1996).

Martín, Plastino & Rosso, Phys. Lett. A (2003).

Statistical complexity measure C 



The complexity of the Logistic Map

109

x(i+1)=r x(i)[1-x(i)] 

Martín, Plastino, & Rosso, Physica A 2006

Euclidian 

distance

Jensen 

distance

Map parameter

Map parameter



The (entropy, complexity) plane: a useful 

tool to distinguish noise from chaos

110

O. A. Rosso et al, Phys. Rev. Lett. 99, 154102 (2007)



Many complexity measures have been proposed

111

Further reading: L. Tang et al, “Complexity testing techniques for time series data: A 

comprehensive literature review”, Chaos, Solitons and Fractals 81 (2015) 117–135 



 The complexity of an object is a measure of the 

computability resources needed to specify the object.

Kolmogorov complexity

Example: Let’s consider 2 strings of 32 letters:

abababababababababababababababab

4c1j5b2p0cv4w1x8rx2y39umgw5q85s7 

 The first string has a short description: “ab 16 times”.

 The second has no obvious description: complex or random? 

 The Lempel & Zip complexity is an estimation of the 

Kolmogorov complexity.



Lempel & Zip complexity of 

the Logistic Map

113Kaspar and Schuster, Phys Rev. A 1987



 Return maps

 Correlation and Fourier analysis

 Stochastic models and surrogates

 Distribution of data values

 Attractor reconstruction: Lyapunov exponents and fractal 

dimensions

 Symbolic methods 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

 Instantaneous phase and amplitude

Methods of time-series analysis
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 A graph: a set of 

“nodes” connected 

by a set of “links”

 Nodes and links can 

be weighted or 

unweighted

 Links can be 

directed or 

undirected

 More in part 3 

(multivariate time 

series analysis)

What is a network?



We use symbolic patterns as the nodes of the network. 

And the links? Defined as the transition probability  → 

Adapted from M. Small (The University of Western Australia)

 In each node i: 

j wij=1

 Weigh of node i: the 

probability of pattern i

(i pi=1)

Weighted and 

directed network



Network-based diagnostic tools

• Entropy computed from node weights (permutation entropy)

• Average node entropy (entropy of the link weights)

• Asymmetry coefficient: normalized difference of transition 

probabilities, P(‘01’→ ‘10’) - P(‘10’→ ’01’), etc.

 iip pps log

(0 in a fully symmetric network; 

1 in a fully directed network)

ijiji wws   log



A first test with the 

Logistic map

D=4

Detects the merging 

of four branches, not 

detected by the 

Lyapunov exponent. 

C. Masoller et al, NJP (2015)

Sp = PE

Sn=S(TPs)

Lyapunov

exponent

Map parameter

Slinks

ac

http://iopscience.iop.org/1367-2630/17/2/023068/pdf/1367-2630_17_2_023068.pdf


Approaching a “tipping point”

119

Control parameter

Can we use the ordinal network method to 

detect an early warning signal of a 

transition to a different dynamical regime?

Yes! Two examples: optical signals and brain signals



Apply the ordinal network method to laser data

 Two sets of experiments: intensity time series were recorded

‒ keeping constant the laser current.

‒ while increasing the laser current.

 We analyzed the polarization that turns on / turns off.

Is it possible to anticipate the switching?

No if the switching is fully stochastic.

As the laser current increases

Time

Intensity @ constant current 

Time



Early warning

Deterministic mechanisms 

must be involved.

First set of experiments (the current is kept constant): 

despite of the stochasticity of the time-series, the node 

entropy “anticipates” the switching

C. Masoller et al, NJP (2015)

Laser current

I

Laser current

I

Laser current

Node 

entropy 

sn

(D=3)

No 

warning

L=1000

100 windows

http://iopscience.iop.org/1367-2630/17/2/023068/pdf/1367-2630_17_2_023068.pdf


In the second set of experiments (current increases 

linearly in time): an early warning is also detected

Node 

entropy

Time

With slightly 

different 

experimental 

conditions: no 

switching.

C. Masoller et al, NJP (2015)

L=500, D=3

1000 time series

Time

http://iopscience.iop.org/1367-2630/17/2/023068/pdf/1367-2630_17_2_023068.pdf


Second application of the ordinal network method: 

distinguishing eyes closed and eyes open brain states

Analysis of two EEG datasets

BitBrain PhysioNet



Eye closed Eye open

Symbolic analysis is applied to the raw data; similar results were 

found with filtered data using independent component analysis.



“Randomization”: the entropies increase and the 

asymmetry coefficient decreases 

Time window = 1 s

(160 data points)

C. Quintero-Quiroz et al, “Differentiating resting brain states using ordinal 

symbolic analysis”, Chaos 28, 106307 (2018).

https://arxiv.org/abs/1805.03933


Low pump High pump

E. G. Turitsyna et al Nat. Phot. 7, 783 (2013)

Example of application: Laminar → Turbulence transition 

in a fiber laser as the pump (control parameter) increases
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I(t)

I=0

=1

0.8 W

1.0 W

0.9 W

0.95 W

Time

Nonlinear 

temporal 

correlations?

Time

2

Raw and thresholded data

L. Carpi and C. Masoller, “Persistence and stochastic periodicity in the intensity

dynamics of a fiber laser during the transition to optical turbulence”, 

Phys. Rev. A 97, 023842 (2018). 



Surrogate

HVG or PE

“thresholded” data

S

Aragoneses et al, PRL (2016)

PE/HVG from 

“raw” data

(the abrupt transition is 

robust with respect to the 

selection of the threshold)

HVG

PE

Comparison of different ways to compute the entropy 

Histogram of 

“raw” values

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.033902


Changing  identifies ``hidden’’ periodicity

Aragoneses et al, PRL (2016)
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Space-time representation of 

a time series



The space-time representation of the intensity time series: 

a convenient way to visualize the dynamics

Color

scale: Ii
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Aragoneses et al, PRL (2016)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.033902


Another example: spatio-temporal representation 

of the intensity of a laser with optical feedback 

132

C. Masoller, Chaos 7, 455 (1997) delay time: 10 ns

Feedback strength 



Hands-on exercise 7: space-time representation of the 

laser intensity

133

Matlab command: imagesc



 Return maps

 Distribution of data values

 Correlation and Fourier analysis

 Stochastic models and surrogates

 Attractor reconstruction: Lyapunov exponents and fractal 

dimensions

 Symbolic methods 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

 Instantaneous phase and amplitude

Methods of time-series analysis
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How to obtain instantaneous amplitude and 

frequency information from a time series?

135



 (A) The original signal. (B) The instantaneous phase extracted 

using the Hilbert transform. (C) The instantaneous amplitude. 

 A = C cos(B).

Example: sine wave with increasing amplitude and frequency

136

G. Lancaster et al, Physics Reports 748 (2018) 1–60
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Rossler

Second example
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x

HT[x]

x

y=HT[x]

Third example

Surface air temperature (SAT)

 HT[sin(wt)]=cos(wt)

Zappala, Barreiro and Masoller, Entropy (2016)

Normalization: =0, =1

http://www.mdpi.com/1099-4300/18/11/408/pdf


For a real time series x(t) defines an analytic signal

Hilbert transform

139

A word of warning: 

Although formally a(t) and (t) can be defined for any x(t), 

they have a clear physical meaning only if x(t) is a 

narrow-band oscillatory signal: in that case, the a(t)

coincides with the envelope of x(t) and the instantaneous 

frequency, w(t)=d/dt, coincides with the dominant 

frequency in the power spectrum.



x = 2.5 + cos(2*pi*203*t) + sin(2*pi*721*t) + cos(2*pi*1001*t);

y = hilbert(x);

plot(t,real(y),t,imag(y))

xlim([0.01 0.03])

legend('real','imaginary')

title('hilbert Function')

Hilbert with matlab

140

The sampling rate must be chosen in 

order to have at least 20 points per 

characteristic period of oscillation.
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 Can we use the Hilbert amplitude, phase, frequency, to :

‒ Identify and quantify regional climate change?

‒ Investigate synchronization in climate data?

 Problem: climate time series are not narrow-band.

 Usual solution (e.g. brain signals): isolate a narrow 

frequency band.

 However, the Hilbert transform applied to Surface Air 

Temperature time series yields meaningful insights.

Application to climate data



Cosine of Hilbert phase

142



How the seasons evolve?

Temporal evolution of the cosine of the Hilbert phase

143



Cosine of Hilbert phase 

during a El Niño period

(October 2015)

Cosine of Hilbert phase 

during a La Niña period

(October 2011)



The data:

 Spatial resolution 2.50 x 2.50  10226 time series

 Daily resolution 1979 – 2016  13700 data points

Where does the data come from?

 European Centre for Medium-Range Weather Forecasts 

(ECMWF, ERA-Interim). 

 Freely available.

“Features” extracted from each SAT time series 

 Time averaged amplitude, a

 Time averaged frequency, w

 Standard deviations, a, w

Changes in Hilbert amplitude and frequency detect 

inter-decadal variations in surface air temperature (SAT)



Relative decadal variations 

Relative variation is considered significant if: 
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D. A. Zappala, M. Barreiro and C. Masoller, “Quantifying changes in spatial

patterns of surface air temperature dynamics over several decades”, 

Earth Syst. Dynam. 9, 383 (2018)
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Relative variation of average Hilbert amplitude uncovers 

regions where the amplitude of the seasonal cycle 

increased or decreased

 Decrease of precipitation: the solar radiation that is not 

used for evaporation is used to heat the ground.

 Melting of sea ice: during winter the air temperature is 

mitigated by the sea and tends to be more moderated.
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D. A. Zappala et al., Earth Syst. Dynam. 9, 383 (2018)
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And many more time series 

analysis methods
 Wavelets

 Detrended fluctuation analysis

 Sample entropy, approximate entropy

 Multifractality

 Topological data analysis

 Etc. etc.



 Linear tools (correlation, Fourier, distribution of datapoints ) 

and nonlinear tools (symbolic analysis, networks, 

spatiotemporal representations, etc.) are useful for 

investigating complex signals.

 Different tools provide complementary information.

Take home messages

“…nonlinear time-series analysis has been used to great 

advantage on thousands of real and synthetic data sets from a 

wide variety of systems ranging from roulette wheels to lasers to 

the human heart. Even in cases where the data do not meet the 

mathematical or algorithmic requirements, the results of 

nonlinear time-series analysis can be helpful in understanding, 

characterizing, and predicting dynamical systems…”

Bradley and Kantz, CHAOS 25, 097610 (2015)


