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Forces in the Solar System

Generated by

gravity (Newtonian + relativistic) due to Sun, planets, satellites,
asteroids.
Model: N point masses + perturbations due to non-sphericity.
solar radiation

radiation pressure (µm): in the direction of the radiation
Poynting-Robertson drag (cm): (Doppler) opposite to velocity
generates migration to the Sun
Yarkovsky effect (from m to km): (thermal inertia) depending on
rotation generates migration to or from the Sun
sublimation in comets NGF

medium: solar wind, gas drag.

magnetic fields: Lorentz forces.

collisions

Tabaré Gallardo Solar System Dynamics



Orbital evolution

given a Newtonian attraction

~̈r = − µ
r2 r̂

and some initial conditions
(~r,~̇r)

an orbit is defined:
(a, e, i, ω,Ω, τ)

constant energy ε = −µ/2a

constant angular moment
h = r2 ḟ

The problem:

given an extra acceleration ~Fp or perturbation
we want to know a(t), e(t), i(t), ...
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Orbital evolution WITH close encounters

  

The Tisserand Relation (4)
Therefore the comet’s elements before and after the 
encounter with Jupiter are related by:

Numerical 
example:

large perturbations

drastic orbital changes

only numerical methods
(clones), statistical studies
(Öpik)

conserved quantity for
RC3BP: Tisserand or Jacobi’s
constant

no secular evolution

C '
ap

a
+ 2
√

a
ap

(1− e2) cos i = T
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Orbital evolution WITH close encounters

v∞ '
√

3− T = U

U is the encounter velocity with the planet before the
gravitational attraction is felt by the particle (that means "at
infinity").

The orbital elements (a, e, i) can evolve but T and U remain
constant, only the orientation of ~U is modified.

It follows that when T > 3 encounters cannot exist.
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Orbital evolution WITH close encounters

T is a good parameter for classification of small bodies.

(from Bertotti et al. 2003)
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Orbital evolution WITHOUT close encounters

2000 CR105

NEPTUNO

SOL

small perturbations

small orbital changes

analytical methods⇒
theoretical predictions

conserved quantities:
"energy", z component of
angular moment

secular evolution
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Gauss equations
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Gauss equations: effects on (a, e, i, $,Ω)

~Fp ⇒ effects on orbital elements

SUN 

asteroid 

R T 

~̈r = − µ
r2 r̂ + ~Fp

~Fp = Rr̂ + Tt̂ + Nn̂

Energy: ε = −µ/2a. Variation in energy:

dε
dt

= ~Fp ·
d~r
dt

= ṙR + rḟ T =
µ

2a2
da
dt
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Gauss equations

Instantaneous perturbation:

⇒ da
dt

= 2
a3/2√
µ(1− e2)

[Re sin f + T(1 + e cos f )]

Mean over one orbital period P:

<
da
dt
>=

1
P

∫ P

0

da
dt
· dt

If < da
dt >6= 0⇒ cumulative effect.
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Gauss equations

Considering that angular momentum is:

h = r2 df
dt

we change the variable:

dt =
r2

h
df

⇒< da
dt
>=

1
P

∫ 2π

0

da
dt

r2

h
df
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Example 1: a comet with NGF

Consider a comet with

~Fp ∼
1
r2 (R,T,N)

We obtain:

<
da
dt
>=

2
(1− e2)

√
aµ

T

<
de
dt
>=

(
1−
√

1− e2
)

e
√

a3µ
T

The radial component is irrelevant, only T matters.
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Example 2: Yarkovsky effect for an asteroid

<
da
dt
>=

2
(1− e2)

√
aµ

T

prograde rotation: T > 0, then mean da/dt > 0, goes away

retrograde: T < 0, then mean da/dt < 0, goes to the Sun

Tabaré Gallardo Solar System Dynamics



Yarkovsky effect: simulating a family

Broz, yarko-site
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Yarkovsky effect

(Broz et al. 2005)

After a collision a family is generated: the smaller fragments (higher
magnitude) are the most affected by Yarkovsky (so, the most
dispersed). This effect can help us in the determination of the age of
the family.
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Example 3: gas drag

da/dt < 0 fall down

de/dt < 0 circularization

~Fp = (R,T, 0)

< ȧ >∝ T < 0

< ė >∝ T < 0
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Example 4: axisymmetric oblate planet

V(r, φ) = −GM
r

[
1− J2P2(sinφ)

(R
r

)2
+ . . .

]
acceleration:

~α = −∇V(r, φ)

perturbation:

~Fp =
R
r3 r̂ +

N
r3 n̂

T = 0 (symmetry)
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Example 4: axisymmetric oblate planet

< da/dt >= 0

< de/dt >= 0

< di/dt >= 0

d$/dt > 0, advance of the
perihelion

dΩ/dt < 0, precession of the
nodes

It is a very typical orbital
behaviour.
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Secular Theory

  

Pioneers of the Three-Body Problem

Euler Laplace Lagrange Jacobi

LeVerrier Hamilton Birkoff Poincaré
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Perturbation Theory

Consider an asteroid at~r perturbed by a planet at~rp.
It is possible to write the equation of motion in the form

~̈r + µ
~r
r3 = ∇R(~r,~rp)

where R is the Disturbing Function. It is possible to transform this
equation in another very different form due to Lagrange (+ Euler +
Laplace):

da
dt

=
2

na
∂R
∂λ

de
dt

= −
√

1− e2

na2e

(
1−

√
1− e2

)∂R
∂λ
−
√

1− e2

na2e
∂R
∂$

di
dt

= −
tan i

2

na2
√

1− e2

(∂R
∂λ

+
∂R
∂$

)
− 1

na2
√

1− e2 sin i

∂R
∂Ω
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Perturbation Theory: Lagrange’s planetary equations

d$
dt

=

√
1− e2

na2e
∂R
∂e

+
tan i

2

na2
√

1− e2

∂R
∂i

dΩ

dt
=

1
na2
√

1− e2 sin i

∂R
∂i

R is a very unfriendly function

R =
∑

k

Ck(a, e, i) cos(σk)

where functions σk(λp, λ,$,Ω) are linear combinations of
λp, λ,$,Ω.

Tabaré Gallardo Solar System Dynamics



Perturbation Theory

The λs are quick varying angles, on the contrary $,Ω are slow
varying angles. Then:

R = RSP($,Ω, λ, λp) + RLP($,Ω)

Instead of full R we consider the mean over the quick varying
angles λ, λp, then:

R ' RLP($,Ω)

this part of the disturbing function is the responsible for the long term
secular evolution of the system.
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Perturbation Theory: secular evolution

Taking R ' RLP the first of the Lagrange’s planetary equations
becomes:

da
dt
' 2

na
∂RLP

∂λ
= 0

de
dt
' −
√

1− e2

na2e
∂RLP

∂$

⇒ the semimajor axes of the planets do not change with time...

the planetary system do not shrinks nor expands

That was a very impacting result of the XVIII century due to Euler,
Lagrange and Laplace.
In fact a(t) = asec+ small amplitude oscillations.
It is also possible to show that e and i do not grow systematically but
oscillate.
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Perturbation Theory: Delaunay canonical variables

Working in canonical variables (M, ω,Ω,L,G,H) where:

L =
√
µa, momentum conjugate of M

G =
√
µa(1− e2), momentum conjugate of ω

H =
√
µa(1− e2) cos i, momentum conjugate of Ω

dM
dt

=
∂H
dL

dω
dt

=
∂H
dG

dΩ

dt
=
∂H
dH

dL
dt

= −∂H
dM

dG
dt

= −∂H
dω

dH
dt

= −∂H
dΩ

H =
v2

2
− µ

r
+ R = − µ

2a
+ R = − µ2

2L2 + R
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Perturbation Theory: Delaunay canonical variables

Hsec(−, ω,Ω,L,G,H) = − µ2

2L2 + Rsec

dL
dt

= −∂Hsec

dM
= 0

⇒ L =
√
µa = constant

that means
a = constant

Then, secular evolution⇒ a = constant.
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Numerical integrations of the exact equations

Given a problem

write equations ~̈r = ~α for all bodies

design an algorithm to calculate~r(t + ∆t) from~r(t)

write in some computer language

run in a computer

we obtain~r(t),~̇r(t)

and a(t), e(t), i(t), . . .
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Numerical integrations of the exact equations
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Numerical integrations: detail on Mars

zoom

a(t) = asec+ small amplitude oscillations
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Eccentricities
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Inclinations
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Secular evolution

There are 3 methods to obtain Rsec (orHsec) from R:

canonical transformations

scissors (just dropping SP terms)

numerical averaging of the exact R:

Rsec =
1

4π2

∫ 2π

0

∫ 2π

0
R dλ dλp
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Asteroid: secular evolution for small e, i

assuming e, i small

define I = sin(i/2)

the secular equations become

de
dt

= − 1
na2e

∂R
∂$

dI
dt

= − 1
na2I

∂R
∂Ω

d$
dt

=
1

na2e
∂R
∂e

dΩ

dt
=

1
na2I

∂R
∂I

with a = constant
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Asteroid: secular evolution

Changing variables (e, $, I,Ω)→ (h, k, p, q)

h = e sin$

k = e cos$

p = I sin Ω

q = I cos Ω

⇒ R(h, k, p, q)

New equations:

dh
dt

= C
∂R
∂k

dk
dt

= −C
∂R
∂h

dp
dt

= C
∂R
∂q

dq
dt

= −C
∂R
∂p

With C = 1
na2 and discarding high order terms in R we obtain the

solution =⇒
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Asteroid: secular evolution

h = e sin$, k = e cos$

h(t) = eproper sin(At + β) + hforced

k(t) = eproper cos(At + β) + kforced

with A(a), proper frequency

Murray and Dermott 1999

Osculating eccentricity:

eosc(t) =
√

h2 + k2
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Asteroid: secular evolution

p = I sin Ω, q = I cos Ω

p(t) = Iproper sin(Bt + γ) + pforced

q(t) = Iproper cos(Bt + γ) + qforced

with B(a), proper frequency
Murray and Dermott 1999

Osculating inclination:

Iosc(t) =
√

p2 + q2
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Example: TNO (h, k) and one planet
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Example: TNO (p = i sin Ω, q = i cos Ω)
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Example: collisional fragments
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20 clones iniciales (azul) y 20 Myr despues (negro)

blue dot: initial conditions
black dots: final
red: intermediary positions

collision generates several
fragments

small differences in ai

small differences in Ai,Bi

after some time $p,Ωp

randomize

osculating e, i changed

proper ep, Ip preserved
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Family perturbed by several planets

Murray and Dermott 1999

The forced modes vary with time but proper values ep, Ip (radius of
the circle) are preserved.

Tabaré Gallardo Solar System Dynamics



Asteroids’ proper elements: memory of their origin
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Planetary system: fundamental frequencies

hforced(t) = −
N∑

i=1

νi

A− gi
sin(git + βi)

kforced(t) = −
N∑

i=1

νi

A− gi
cos(git + βi)

gi are fundamental frequencies of the system

A is a proper frequency

when A = gi we have a secular resonance
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Planetary system: fundamental frequencies

pforced(t) = −
N∑

i=1

µi

B− fi
sin(fit + γi)

qforced(t) = −
N∑

i=1

µi

B− fi
cos(fit + γi)

fi are fundamental frequencies of the system

B is a proper frequency

when B = fi we have a secular resonance
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Planetary system: h = e sin$, k = e cos$

The Sun is a natural origin for computing positions. It is the focus.
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Planetary system: p = i sin Ω, q = i cos Ω

The ecliptic it is NOT a natural plane for defining inclinations.
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Secular resonances: small (e, I) case

For small e, I it results that A,B only depend on a, then there are
specific values of a for which some terms of the forced mode diverge:
when A(a) = gi or B(a) = fi.

Murray and Dermott 1999
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Secular resonances: general case

For large e, I it results that A(a, e, i) and B(a, e, i) so the divergence
occurs in the surfaces A(a, e, i) = gi and B(a, e, i) = fi.

νi corresponds to A(a, e, i) = gi

ν1i corresponds to B(a, e, i) = fi

Murray and Dermott 1999
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Example: particle in secular resonance ν6
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Fundamental and proper frequencies

Computing the spectra of h(t), k(t), p(t), q(t) all frequencies appear:
fundamental (gi, fi) and proper (A,B).
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Fundamental and proper frequencies

In the secular evolution of an asteroid perturbed by N planets we have:

N (low) fundamental frequencies gi related to oscillations in
ei, $i

N (low) fundamental frequencies fi related to oscillations in
ii,Ωi

2 (low) proper frequencies A,B related to oscillations in e, $
and i,Ω

In the spectra obtained from a numerical integration we will observe
also N + 1 high frequencies related to the orbital motion of the bodies
and associated with small amplitude oscillations in the semimajor
axes. They do not appear in a secular theory.
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Chaos
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Regular versus chaotic motion

RESONANT STRUCTURE OF THE OUTER SOLAR SYSTEM 475

the initial values of the semimajor axis and eccentricity of
the corresponding planet were uniformly distributed on a
rectangular grid covering the vicinity of the actual position
of the planet, while the initial positions of the other planets
were chosen to be the actual ones at epoch JD 2,451,100.5.
Also, the initial inclination and angular orbital elements of
the corresponding planet were Ðxed at their present values.
The lengths of the integrations were chosen to be equal to
1.5 Myr for Jupiter and Saturn and 3 Myr for Uranus and
Neptune, which correspond approximately to 125,000
orbital revolutions of Jupiter, 51,000 for Saturn, 35,600 for
Uranus, and 18,200 for Neptune. These lengths are large
enough for the spectral analysis method (° 3) to detect the
presence of the main resonances involving the mean
motions of the giant planets.

Short-term oscillations (on the order of the orbital
periods) were eliminated during the numerical integration
by employing an on-line low-pass Ðltering procedure. The
simulated solutions that we obtained were Fourier-
transformed using the standard FFT algorithm. The spec-
tral number N was deÐned as the number of substantial
spectral peaks (arbitrarily deÐned as being higher than 5%
of the largest peak) in the semimajor-axis variation of the
corresponding planet. The spectral number N thus obtained
was associated to the corresponding initial conditions used.

3. SPECTRAL ANALYSIS METHOD

The spectral analysis method for detecting the chaoticity
of planetary motion is based on the well-known properties
of power spectra (Powell & Percival 1979 ; Michtchenko &
Ferraz-Mello 1995). Fourier transform techniques, applied
to the output of a numerical integration, allow one to dis-
tinguish between regular and chaotic motion in the follow-
ing way :

Regular orbits.ÈThe regular trajectories are condition-
ally periodic, so that any orbital element ele (t) depends on
time as a function :

ele (t)\ ;
k

A
k

exp 2nikf t , (1)

where f is a frequency vector whose components are the
independent frequencies of motion and k is an arbitrary
integer vector. The spectral composition of the motion,
when the independent frequencies are constant in time, may
be obtained from its Fourier transform.

For a smooth function ele (t), the amplitudes decreaseA
krapidly with o k o , so that the sum in equation (1) is domi-

nated by a few terms. Therefore, a spectrum of regular
motion is characterized by a countable (and generally small)
number of frequency components. It consists of the lines
associated with the independent frequencies, whose number
is equal to the number of degrees of freedom of the dynami-
cal system, and also those corresponding to higher harmon-
ics and linear combinations of the independent frequencies.
The half-width of each line is on the order of *f \ 1/T ,
where T is the time length of the integration. Thus, T
deÐnes the Fourier transformÏs resolution : the longer the
time T , the smaller the *f and the Ðner the details in the
Fourier spectrum that can be distinguished. For sufficiently
large T , each spectral peak may be approximated by a
Dirac d-function.

We illustrate a power spectrum of regular motion in the
top panel of Figure 1, which shows the spectrum of the

FIG. 1.ÈPower spectra of JupiterÏs semimajor axis. Top, a regular orbit
obtained with the current initial conÐguration of the Jovian planets over
1.5 Myr (spectral number N \ 4) ; bottom, a chaotic orbit obtained with a
Ðctitious initial conÐguration of the Jovian planets in which the semimajor
axis of Saturn was incremented by 0.03 AU (spectral number N \ 100).

semimajor axis of JupiterÏs orbit obtained with the current
initial conÐguration of the Jovian planets. In this example,
the spectral number N, deÐned as the number of signiÐcant
lines in the power spectrum, is equal to 4.

Chaotic orbits.ÈIn the case of chaotic motion, the inde-
pendent frequencies of the dynamical system vary in time,
and irregular trajectories are not conditionally periodic.
The Fourier transform of the orbital elements is not a sum
over Dirac d-functions. Consequently, a power spectrum of
chaotic motion is not discrete, showing broadband com-
ponents. If independent frequencies vary sufficiently largely
and rapidly to detect their di†usion over the chosen time
span T , the power spectrum yields a large value for the
spectral number N. To illustrate this, we show a typical
spectrum of chaotic motion in the bottom panel of Figure 1.
This is the spectrum of the semimajor axis of JupiterÏs orbit
obtained with a Ðctitious initial conÐguration of the Jovian
planets in which the current semimajor axis of Saturn was
incremented by 0.03 AU, so as to put the Jupiter-Saturn
pair inside the 5:2 mean motion resonance. In this case, we
assign to the spectral number a value of 100, which was
chosen in this work as the upper limit on N.

Therefore, the spectral number can be used to qualify the
planetary motion in the following way : small values of N
correspond to regular motion, while large values indicate
the onset of chaos. It should be observed, however, that an
orbit classiÐed as being regular can appear chaotic if a
greater extension of the time interval is used in the integra-
tions. Indeed, if the di†usion rate of the independent fre-

Michtchenko and Ferraz-Mello 2001

well defined frequencies:
regular motion

poorly defined frequencies,
varying with time: chaotic
motion
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Chaos versus regular

The planetary system is stable and chaotic ...

fundamental frequencies of the planetary system have small
variations in time scales of 109 years

the future of the system is DETERMINED (only one solution
exists) but CHAOTIC (hard to predict)

the planetary system is under STABLE CHAOS: we can predict
reasonably well the orbital evolution but not the exact position of
the planets in their orbits
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Dynamical regimes

with close encounters: highly chaotic, unpredictable

without close encounters

regular motion: fixed frequencies, very predictable
chaotic motion: varying frequencies, predictable in some
timescale

Consider the time evolution of the
difference between 2 trajectories in the
phase space:

Xa − Xb = l(t) ≈ l0 exp(λt)

we calculate the Lyapunov exponent, λ,
which is a measure of the chaos. The
timescale of the dynamical memory is
1/λ.
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Dynamical maps: chaotic regions
No. 1, 2001 RESONANT STRUCTURE OF THE OUTER SOLAR SYSTEM 477

FIG. 3.ÈSame as Fig. 2, but for Saturn. The grid of initial conditions used had 181] 33 points, AU, and*aS\ 0.001 *eS\ 0.01.

““ stable chaos,ÏÏ has already been described by Milani &
Nobili (1992). Therefore, in the present state of the art, once
an indication of chaos is obtained, a very long, precise inte-
gration of the dynamical model is necessary in order to
assess the signiÐcance of this chaos. In this work, we have
performed very long integrations over a few sets of initial
conditions, and the relevant results are included in ° 5.

4. DYNAMICAL MAPS

The dynamical maps of the regions neighboring Jupiter,
Saturn, Uranus, and Neptune are presented in Figures 2È5,
respectively. Interpretation of the maps will be easier when
prefaced by some considerations regarding the main fea-
tures of the dynamics of planetary systems. Let be them

jmass of planet (in units of solar mass) and and beP
j

a
j
, e

j
, i

jthe semimajor axis, eccentricity, and inclination of its helio-
centric orbit, respectively. The dynamics of the system of M
planets is characterized by the conservation of total energy
and angular momentum. The angular momentum com-
ponent normal to the reference plane is given by

;
j/1

M
L
j
J1 [ e

j
2 cos i

j
,

where

L
j
\ m

j
1 ] m

j
JG(1] m

j
)a

j

with G the gravitational constant. In the secular approx-
imation (for all j), and the quantityL

j
\ const

AMD\ ;
j/1

M
L
j
(1[ J1 [ e

j
2 cos i

j
)

is also conserved. This quantity was introduced by Laskar
(1997, 2000) as the total angular momentum deÐcit due to
eccentricity and inclination. For instance, AMD is zero for
circular and coplanar orbits, and it is large for large values
of the planetary eccentricities. For a critical value of total
AMD, crossing between planetary orbits is possible and the
system becomes unstable, with a possible escape of planets.

It has long been known that the giant planets are close to
mean motion resonances. One simple analytical model for
the mean motion resonance dynamics of a planetary system
(Michtchenko & Ferraz-Mello 2001) allows us to under-
stand the main features. One pair of planets, and isP

i
P
j
,

involved in the p :q mean motion resonance when their
mean motions, and obey the relationn

i
n
j
, pn

j
[ qn

i
^ 0,

where p and q are small integers. The variations of their
averaged (with respect to the orbital periods) semimajor
axes are constrained by the condition

pL
i
] qL

j
\ const , (2)

implying that the semimajor-axis oscillations are opposite
in phase and have amplitudes inversely proportional to the
planetary masses. The width of the p :q resonance in the

Michtchenko and Ferraz-Mello 2001
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Dynamical maps: non secular regimes

take set of initial values (a, e)

calculate the mean ā in some interval

calculate the variation ∆ā (running window)

surface plot of ∆ā(a, e)

Model: real SS. Initial i = 0
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Theory and numerical studies

Nowadays theoretical analysis is used not just to obtain
analytical solutions but to provide theoretical explanations to
the very precise solutions obtained with the numerical
integrators.

Everybody can obtain a precise numerical solution of a
dynamical problem but only with the understanding of the theory
we can explain the numerical results.
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Kozai-Lidov Mechanism
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Kozai-Lidov mechanism

Consider a comet at~r perturbed by a planet at ~rp in circular orbit:

 

H(t) =
v2

2
− Gm�

r
+ R(~r, ~rp)

Hsec = −Gm�
2a

+ Rsec
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Kozai-Lidov mechanism

Rsec =
1

4π2

∫ 2π

0

∫ 2π

0
R(λ, λp) dλ dλp

The numerical method by Bailey et al. (1992) and Thomas &
Morbidelli (1996) allows to consider several perturbing planets.

Rsec(a, e, i, ω) is independent of the variable Ω, thenH is also
independent and the momentum canonically conjugated
H =

√
a(1− e2) cos i is constant.
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Kozai-Lidov mechanism

Then

H(e, i, ω) = constant, energy constant

a = constant, because it is a secular motion√
(1− e2) cos i = constant, because H = constant

⇒ coupled oscillations e, i and also ω.

from now on we will call H =
√

(1− e2) cos i
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H =
√

(1− e2) cos i = constant
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Orbital elements data base
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Kozai-Lidov mechanism: comets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160  180

e
cc

e
n
tr

ic
it

y

inclination

H(i,e), comets

0.10.3

0.5

0.7

0.9

-0.1 -0.3

-0.5

-0.7

-0.9

Tabaré Gallardo Solar System Dynamics



Kozai-Lidov mechanism: asteroids
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Kozai-Lidov: theory and numerical integrations

Actual variations in (e, i) are limited by the energy level curves
H(e, i, ω) = constant

(Gallardo et al. 2012).
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Kozai-Lidov mechanism: analytical

Particle evolving always inside or outside the perturbers⇒
acceptable analytical approximation to R.

⇒ di
dt
∝ sin(2ω)

⇒ equilibrium points at ω = 0◦, 90◦, 180◦, 270◦

Asteroid perturbed by Jupiter or
satellite perturbed by an exterior
satellite:

dω
dt
∝ (3− 3e2 − 5 cos2(i))

critical inclination i ∼ 39◦

TNO perturbed by Neptune or
satellite perturbed by J2 or interior
satellite:

dω
dt
∝ (3 + 5 cos(2i))

critical inclination i ∼ 63◦
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Kozai-Lidov mechanism: sungrazers

It is an efficient mechanism to generate sungrazers:

Fernandez et al. 2014
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Kozai-Lidov mechanism

KL mechanism implies large coupled changes in e, i

is typical for orbits with large e or i (H ∼ 0)

for low (e, i) orbits (| H |∼ 1) there are very small orbital
variations

KL mechanism and secular resonances also appear inside MMRs
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Mean Motion Resonances
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Orbital Resonances

Commensurability between frequencies associated with orbital
motion: mean motion, nodes and pericenters

mean motion resonances

two-body
three-body

secular resonances

Lindblad resonances

spin-orbit resonances
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Some examples

Io-Europa-Ganymede

Saturn satellites

Saturn rings

Uranus satellites

asteroids with Jupiter, Mars, Earth, Venus...

Trans Neptunian Objects with Neptune

Pluto - Neptune

comets - Jupiter

Pluto satellites: Styx, Nix, and Hydra
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Two body resonances

rP 

r 

SUN 
asteroid 

planet p, q integers
q is the order

pnast ' (p + q)npla

aast ' (
p

p + q
)2/3apla

particle (asteroid, comet, TNO, ring) with a massive body
(planet, satellite)

between two massive bodies (planets, satellites)

strength ∝ mperturber
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Three body resonances

SUN 
asteroid 

k0n0 + k1n1 + k2n2 ' 0

particle (asteroid, comet, TNO) with two massive bodies
(planets, satellites)

between three massive bodies (planets, satellites)

strength ∝ m1m2
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Non resonant asteroid in rotating frame

Mean perturbation is radial: Sun-Jupiter

Sun Jupiter

< Fp >∝ Rr̂

T = 0⇒ a = constant

⇒ typical secular evolution
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Resonant asteroid

Mean perturbation has a transverse component.

Sun Jupiter

< Fp >∝ Rr̂ + Tt̂

T 6= 0⇒ a = oscillating

⇒ different from secular evolution
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Dynamical effects: a numerical exercise
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Mean motion resonances

It has sense to find asteroids inside resonances because:

there are several resonances

resonances have some strength and stickiness, they can "attract"
trajectories to them

there are mechanisms (like Yarkovsky, tides, gas drag) that drive
the objects to the resonances and there is a chance to be captured
by them
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1772: Lagrange equilibrium points
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1906: (588) Achilles by 500 yrs

Sun Jupiter
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1784: Laplacian resonance

3λEuropa−λIo−2λGanymede ' 180◦

3nEuropa − nIo − 2nGanymede ' 0

They are also in commensurability
by pairs:

2nEuropa − nIo ' 0

2nGanymede − nEuropa ' 0

⇓

It must be the consequence of some physical mechanism.

Tabaré Gallardo Solar System Dynamics



Quasi resonances

quasi resonance Uranus - Neptune:

nUranus ∼ 2nNeptune

quasi resonance Saturn - Uranus:

nSaturn ∼ 3nUranus

quasi resonance: Jupiter - Saturn

2nJupiter ∼ 5nSaturn

Why the planets are close to resonance?
Hint: planetary migration
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1866: Kirkwood gaps
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Distribution of asteroids semimajor axes
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Main belt of asteroids is sculpted by resonances.
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1875: resonant asteroids (153) Hilda 3:2

rotating frame

Sun Jupiter

2nHilda ' 3nJup

aHilda ' (
2
3

)2/3aJup ' 3.97au
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Gaps and concentrations

resonances excite e

perihelion diminishes

close encounter with Mars, Earth, Venus

ejection from the resonance⇒ gap

asteroids with large a cannot reduce their q enough, no
encounters⇒ remain trapped in resonance
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Hildas and Trojans

www.astro.ncu.edu.tw

Tabaré Gallardo Solar System Dynamics



Temporary satellite capture

the most probable origin of the irregular satellites
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Quasi satellite, resonance 1:1
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Quasi satellite, resonance 1:1

inertial frame

QUASI SATELLITES IN THE OUTER SOLAR SYSTEM 1979

FIG. 1.ÈNominal shapes of three QS orbits, seen in a frame that coro-
tates with their planet. These orbits have nominal eccentricities of 0.1, 0.2,
and 0.5. The shaded circle is the size of JupiterÏs Hill sphere, shown for
comparison.

together. The nine sets were given inclinations relative to
their planetÏs orbital plane, with di†erences *i1 of 0¡, ^5¡,
^10¡, ^20¡, and ^30¡. The ensemble of these 1800 par-
ticles will be called the ““ broad ÏÏ set. The matching positive
and negative inclination increments should produce similar,
though not identical, results. These arrangements do not
constitute mirror conÐgurations, as the giant planets do not
all lie in exactly the same plane. However, we do expect the
results to be similar for relative inclinations of the same
absolute magnitude, allowing an additional, albeit crude,
check on our results.

Based on the simulations described above, further inte-
grations (the ““ narrow ÏÏ set) were performed at lower *i and
over a smaller range of eccentricities. Nine sets of 50 par-
ticles, 1800 in total, were again simulated at inclinations of
[4¡ to ]4¡, in 1¡ increments relative to the associated
planetÏs orbital plane. These simulations provide a more
detailed look at the most stable regions of the phase space.

Each simulation in the broad set was performed with two
di†erent time steps. The Ðrst time step *t was 0.1, 0.25, 0.5,
and 1.0 yr for the QSs of Jupiter through Neptune, respec-
tively, resulting in 120È140 steps per orbital period of the
associated planet. The second set was a factor of 5 smaller
and was performed as a check on the earlier integrations.
The results were qualitatively the same in both cases, so
only the results with the larger step size are presented here,

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
1 Negative inclinations are not properly deÐned for the standard

Keplerian elements, where the inclination is restricted to the range
i ½ [0¡, 180¡]. In the event of a particle being assigned a negative inclina-
tion through the application of the increments mentioned above (i.e., if

where the subscript p indicates the planetÏs ecliptic elements),i
p
] *i\ 0,

the following algorithm is used :

i\ o i
p
] *i o , )\ )

p
] 180¡ , u\ u

p
] 180¡ .

This procedure avoids confusion as to the orbital geometries : all particles
are initially on prograde heliocentric orbits.

unless speciÐcally mentioned otherwise. The simulations in
the narrow set were performed with the larger step size only.

We note that the use of larger step sizes for the more
distant planets results in a decreased accuracy of the inte-
gration of the inner giant planets, which could potentially
degrade the accuracy of the simulations of the outer giant
planet QSs. However, the time steps chosen allow the neces-
sary accuracy to be maintained. For the most extreme case,
when simulating hypothetical QSs of Neptune, a time step
of 1.0 or 0.2 yr is used, resulting in approximately 12 or 60
steps per orbit for Jupiter. Given the similarity of the results
in these two cases, and the fact that QSs interact most
strongly with their associated planet, we conclude that this
choice of step size is reasonable.

The difficulties involved in performing such long-term
integrations are well known, and we do not claim here to
have overcome them. The Lyapunov times of QSs are 104
to 105 yr for the longest Uranus and Neptune survivors,
and thus the strict validity of simulations on longer time-
scales is questionable. However, we make the conventional
argument that the speciÐc details of the evolution are sec-
ondary since we are not interested in any speciÐc QS, but
only the statistics of the QSs as an ensemble.

Particles passing within the Hill sphere RH \ [M
p
/

(3 where and are the mass and semimajorM
_
)]1@3a

p
, M

p
a
paxis of the planet, respectively, are removed from the simu-

lations, as our algorithm is not designed to handle these
close encounters to high accuracy. This criterion also pre-
vents confusion (on the basis of their low relative
longitudes) of true captured satellites with QSs. Though
motivated by practical concerns, this approach is not
without some physical justiÐcation : one expects particles
su†ering such close approaches to undergo relatively large
changes in their orbital elements, removing themselves from
the QS sample. Indeed, our simulations conÐrm this to
some degree : QSs are found to be unstable in the region
immediately outside the Hill sphere.

To monitor close approaches, our simulations must reli-
ably detect close encounters between the test particles and
the planet. This is done simply by checking at each time step
whether any particle is within of any planet. This pro-RHcedure is reliable as long as the distance traveled by a test
particle in one time step is much less than otherwise theRH,
close encounter might be missed. We have veriÐed that the
time steps *t are small enough (even for the largest step size)
that the probability of a close encounter being missed by
the particleÏs ““ stepping over ÏÏ the Hill sphere without being
detected is of order 10~2, and thus we are conÐdent that
close encounters between QSs and their planets are detected
properly.

Pains are taken to determine which particles in our simu-
lations remain on quasi-satellite orbits and which wander
o† to nearby regions of phase space. A criterion based solely
on the value of the semimajor axis is incomplete because
particles may escape into other types of 1 :1 mean motion
resonances, such as tadpole or horseshoe orbits. Here a
particle is deemed to have left the QS state if the longitude
di†erence j between it and its planet exceeds 120¡, since an
object would require a heliocentric eD 0.9 to be on such an
elongated QS orbit. However, as this procedure may fail to
detect particles orbiting near the L4 and L5 points, we also
maintain a record of the particlesÏ minimum and maximum
relative longitudes. These values are checked on timescales
of about one heliocentric orbital period or less and allow us

Wiegert et al. 2000

rotating frame
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2004 GU9: Earth quasi satellite, resonance 1:1

Sun Earth
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1999 ND43: Mars horseshoe, resonance 1:1

Sun Mars
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Janus - Epimetheus 1:1
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(134340) Pluto in exterior resonance 2:3

Sun Neptune
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Theory: a simple model for resonance (p + q) : p

R = RShortP + RLongP + RRes(σ)

Assuming

Jupiter in circular orbit

coplanar orbits (i = 0)

Resonant disturbing function

RRes(σ) depends on the critical
angle:

σ = (p + q)λJ − pλast − q$ast

planetary equations

da
dt
∝ ∂R
∂σ

where

R ∝ mJeq cosσ

=⇒
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Librations in a(t)

⇒ da
dt
∝ mJeq sinσ

equilibrium points:
σ = 0◦, 180◦

amplitude ∝ eq

153 Hilda: num. integration

librations
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Semimajor axis: width

Nesvorny et al. in Asteroids III

circulation:

dσ
dt
6= 0

librations:

dσ
dt
∼ 0
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Widths ∝ eq

Murray and Dermott in Solar System Dynamics

Chaos:
at resonance borders

superposition of
resonances
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350.000 asteroids

AstDyS database
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Librations in eccentricity: bananas
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Topology (e cosσ, e sinσ)

Murray and Dermott in Solar System Dynamics
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Orbital inclinations of asteroids
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SPATIAL Resonant Disturbing Function

Asteroid perturbed by Jupiter in circular
orbit:

R =
∑

j

Cj(a, e, i) cos(σj)

σj = k1λ+ k2λJ + k3$ + k4Ω

the arbitrary set of ki must verify:

k1 + k2 + k3 + k4 = 0

principal term:

C(a, e, i) ∝ e|k3|(sin i)|k4|

eccentricity type:
C ∝ e|k3|

inclination type:
C ∝ (sin i)|k4|

mixed:
C ∝ e|k3|(sin i)|k4|

=⇒ we look for small k3, k4
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Semi analytical methods

Reasons for numerical methods:

analytical methods are very complex (R is complicated)

interest to have a general view of all resonances in the SS

quick estimation of locations and strengths

identification of the strongest resonance in an interval of (a, e, i)
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Numerical calculation of R(σ)

rP 

r 

SUN 
asteroid 

planet 

R = k2mP

( 1
| rP − r |

− r · rP

r3
P

)
R(σ) '

∫
R(λP, λ)dλP

where λ = λ(λP, σ) assuming

σ = (p + q)λP − pλ− q$

R(σ) is mean R imposing the resonant link: σ = constant.
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Numerical calculation of R(σ) for resonance 1:4

low inclination (i=2)

e=0.80

sh
ap

e 
of

 R
(

σ)
 fo

r 
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high inclination (i=40,ω=60)
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σ

Gallardo 2006
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Strength of the resonance

Strength:
S = ∆R(σ)

The perturbation necessary to eject an asteroid from the resonance is
proportional to the amplitude of R(σ).
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Atlas of resonances in the Solar System, low e
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Atlas of resonances in the Solar System, high e
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Atlas from 0 to 2 au

Gallardo 2006
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Atlas in the asteroids region

Gallardo 2006
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Atlas in the Trans Neptunian Region

Gallardo 2006
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Stickiness: ability to capture particles

Gallardo et al. 2011
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Retrograde resonances
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Resonances coplanar retrograde
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Coorbital retrograde

heliocentric motion

SUN 

asteroid 

planet 

relative motion

Morais and Namouni 2013
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2015 BZ509: discovered in January 2015

a = 5.12 au, e = 0.38, i = 163◦

Sun Jupiter
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Resonances of Long Period Comets

Fernandez et al., in preparation
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Resonances of Long Period Comets

Fernandez et al., in preparation
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Resonances of Long Period Comets

Fernandez et al., in preparation
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LP comet ending as sungrazer
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Orbital states in space (ω, i): KL mechanism
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Three Body Resonances (TBRs)

Orbital commensurability: k0n0 + k1n1 + k2n2 ' 0

SUN 
asteroid 
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TBRs are weak and numerous

k0n0 + k1n1 + k2n2 ' 0

Given two planets, an infinite family of TBRs is defined:

n0 '
−k1n1 − k2n2

k0

how strong are they?

They are weak: ∝ m1m2.

superposition generates chaotic diffusion.
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Three Body Resonances

A VERY complicated problem

An expansion for the resonant disturbing function can be
obtained as a summation of terms of the type

Ce|k3|
0 e|k4|

1 e|k5|
2 sin(i0)|k6| sin(i1)|k7| sin(i2)|k8|×

× cos(k0λ0+k1λ1+k2λ2+k3$0+k4$1+k5$2+k6Ω0+k7Ω1+k8Ω2)

being C also a VERY complicated expression
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ρ(σ): numerical estimation of R(σ)
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large variations of ρ with σ is indicative of a strong resonance

small variations of ρ with σ is indicative of a weak resonance

an extreme of ρ(σ) at some σ means there is an equilibrium
point
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Atlas of TBRs: global view (for e = 0.15)
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Effects on the distribution of asteroids

 2  2.2  2.4  2.6  2.8  3  3.2  3.4

lo
g
 (

S
tr

e
n
g
th

)

a (au)

1
-4

J
+

2
S

1
-4

J
+

3
S

2
-7

J
+

4
S

1
-3

J
+

1
S

2
-7

J
+

5
S

2
-6

J
+

3
S

1
-3

J
+

2
S

3
-8

J
+

4
S

2
-5

J
+

2
S

3
-7

J
+

2
S

3
-8

J
+

5
S

2
-1

M

Gallardo 2014

Tabaré Gallardo Solar System Dynamics



Spin-Orbit Resonances
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Irregular bodies: Angular Momentum exchange

A not central V(~r) generates a
force on the satellite:

~F = −msat∇V

reaction on the planet:

~M = ~r ∧ (−~F) = ~r ∧ msat∇V

~Lpla variation:

d~Lpla

dt
= ~M

~L conservation:

~Lpla + ~Lorb = constant

⇒ angular momentum exchange ∆~Lorb = −∆~Lpla
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Tides

Tides: a common cause of angular momentum exchange.

PLANETA

SATELITE

acceleration due to the satellite:

α = G
msat

r2

tides on the planet:

∆α = 2G
msat

r3 ∆r

where ∆r = Rpla

tides⇒ deformation
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Tides and continuous Angular Momentum exchange

Response to tides are not instantaneous:

  

Tidal Torques (2)
The response of the satellite to the tidal bulge it has raised 
depends on whether the satellite is (a) outside synchronous orbit 
or (b) inside synchronous orbit.  The resulting asymmetry exerts a 
torque on the satellite.

Murray and Dermot, 1999

The bulge is systematically ahead (the planet rotation slows down) or
back (the planet rotation accelerates).
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Spin-orbit resonance

Now, look at the satellite

Encyclopedia of the Solar System, chap. 42

from Euler’s equations

~̇Lsat = ~M

⇒ θ̈ =
ω2

0
2r3 sin 2(f − θ)

with

r =
a(1− e2)

1 + e cos f

ω2
0 =

3(B− A)

C
Gmp
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Surface of section (θ, θ̇) at periapse

Case e = 0.1 and ω0 = 0.2:

Encyclopedia of the Solar System, chap. 42

Resonances 1:2, 1:1, 3:2, 2:1, 5:2 are showed.
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Spin-orbit resonance: chaos

Case of Hyperion e = 0.1 and ω0 = 0.89:

Encyclopedia of the Solar System, chap. 42
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Lindblad resonances
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Lindblad resonances

Consider an axially symmetric planet

V(r, φ) = −GM
r

[
1− J2P2(sinφ)

(R
r

)2
+ . . .

]
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Lindblad resonances

mean motion n2 = GM
r3

[
1 + 3

2 J2

(
R
r

)2
+ . . .

]

radial frequency k2 = GM
r3

[
1− 3

2 J2

(
R
r

)2
+ . . .

]

vertical frequency µ2 = GM
r3

[
1 + 9

2 J2

(
R
r

)2
+ . . .

]

a spherical planet verifies n = k = µ
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Lindblad resonances

Saturn rings and satellites

Encyclopedia of the Solar System, chap. 27
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Lindblad resonances

⇒ resonances occur at r when:

n(r)

ns
=

j + k + l
j− 1

with strength
∝ e|l|(sin i)|k|

⇒ strongest horizontal (i = 0) resonances occur for l = k = 0:

n(r)

ns
=

j
j− 1

(29 : 28)

⇒ strongest vertical (i 6= 0) resonances occur for k = 1, l = 0:

n(r)

ns
=

j + 1
j− 1

(4 : 2)

⇒ formation of spiral density (e, horizontal) waves and spiral
bending (i, vertical) waves.
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Spiral waves

Fundamental Planetary Science

spiral density waves
(due to e)

Fundamental Planetary Science

spiral bending waves
(due to i)

Tabaré Gallardo Solar System Dynamics



Saturn rings

Lissauer and de Pater, Fundamental Planetary Science
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Orbital integrations

JPL database: ssd.jpl.nasa.gov/sbdb-query.cgi

MPC: www.minorplanetcenter.net

AstDyS: hamilton.dm.unipi.it/astdys

numerical integrators for beginners: Solevorb, Evorb, ORSA,...

numerical integrators for experts: Mercury, Swift, HNBody,...
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Appendix
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Close encounters?

α = GM�/r2

A small departure dr generates a
tide:

dα = 2GM�
1
r3 dr

Solar tide on satellite’s orbit:

dα = 2GM�
1
a3 ∆

αpla = Gm/∆2

dα = αpla occurs for

∆lim ∼ a
(

m
2M�

)1/3

⇒ ∆Hill = a
( m

3M�

)1/3
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Planetary system: Angular Momentum Deficit

~L =

N∑
j=1

~Lj = (Cx,Cy,C) = constant

invariable plane: ⊥ ~L

Lz = C '
N∑

j=1

mj

√
aj(1− e2

j ) cos ij

L for circular coplanar orbits in IP is

L(0, 0) =

N∑
j=1

mj
√

aj

AMD = L(0, 0)− Lz(actual) = constant

AMD = departure from coplanar circular orbits
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Mystery of meteorites solved

metallic meteorites have Cosmic Ray Exp. times of ∼ 100 Myrs

carbonaceous meteorites have Cosmic Ray Exp. times of ∼ 1
Myrs

Mechanism:
collision starts exposure to cosmic rays
Yarkovsky:

metallic fragments migrate slowly (large CRE)
others fragments migrate quickly (small CRE)

they reach a resonance at different times

resonance quick delivery to Earth
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