ESTRUCTURA

Figure 13.1 The structure of the Sun is determined by balances
between forces and in the outward flow of energy.

B The energy radiated
from the surface of the
Sun balances the energy

produced in its interior.
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Quién soporta esta presion?
*Presion del gas (peso molecular medio)
*Presion de radiacion (fotones)

*Presion de gas degenerado (electrones)



Stellar theory”

Conservation of dM, 2 ' radml. dlsu.mm
mass 3 =4npr (9.60) | M, mass interior to r
p  mass density
Hydrostatic dp —GpM, 9.61) p  pressure
equilibrium dr  r2 ' G  constant of gravitation
dL, ) L, luminosity interior to r
Energy release =4npr-e (9.62) .
dr €  power generated per unit mass
. T temperature
Radi dT -3 (k)p L
ative = )p Ly (9.63) | ¢ Stefan-Boltzmann constant
transport dr 160 T3 4nr?
(k) mean opacity
Convective dT —-1Td
onvectiv -t L2 9.64) | y ratio of heat capacities, c,/cy
transport dr y pdr ’

“For stars in static equilibrium with adiabatic convection. Note that p is a function of r. x and e are functions of
temperature and composition.




Figure 13.5 Higher-temperature regions deep within the Sun produce more radiation than lower-

temperature regions farther out. While radiation flows in both directions, mere radiation flows from the

hot regions to the cooler regions than from the cooler regions to the hot regions, In this way, radiation i
carries energy outtward from the inner paris of the Sun.

transformacion gamma - visible



1 1 La OPACIDAD del medio es
CIM= =" na medida de la dificultad

KIO a que experimenta la

radiacion (fotones) en
atravesarlo

e

whew |

Photons take tortuous paths out of the Sun’s interior,
Meutrinos pass right on through in just two seconds,



Figure 13.6 The interior
structure of the Sun is divided
tnto zones on the basis of where
energy is produced and how it is
transported onnward,
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Figure 13.2 A aitaway fignre showing the interior structure of the Sun. (a) Temperature, density, and
pressure increase toward the center of the Sun. (b) Energy is generated in the Sun's core,
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The Sun is “limb darkened.” B} .. because near its edge we see
It is fainter near its edge... the Sun at a steep angle, and so do
not see deeply into its atmosphere.

.....
e

Near its center we observe the surface
of the Sun face-on, and so see deeper
into hotter, brighter regions.




hite Light
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mource: High Altitude Observatory/Solar Maximum Mission Archives HAQ A-0O14




June 1946: Ha photograph

Source: High Altitude Observatory Archives
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Weaker gravity means that the
pressure in the interior of the
larger Sun would be lower.

Imagine a hypothetical Sun
that has a mass of 1 M, but
is larger than the Sun.

Hyclirostatic
. equilibrium

Lower pressure means lower
temperature and less energy |
generated in the larger Sun
than in the actual Sun.

With more surface area
to radiate, the larger Sun
would be more luminous
than the true Sun...

The larger Sun would not |
produce enough energy to
replace that radiated away. |

...while gravity would
be weaker inside the
larger Sun.

As the out-of-balance
hypothetical Sun lost
energy it would shrink,
until energy produced |
again balanced energy
radiated away.
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Figure 7.1 Mapping of the temperature-density diagram according to the equation of stat
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Figure 7.2 Mapping of the temperature-density diagram according to nuclear processes.
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Figure 16.2 Plots of the
rate of energy generation as a
function of temperature for the
proton—proton chain and the
CNO cycle. At the higher
central temperatures of stars
more massive than 1.5 Mg,
it is the CNO cycle that more
efficiently fuses hydrogen into
helivm.
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Figure 13.4 The Sun and "
all main sequence stars get their
energy by fusing the nuclei cy‘ _:5-"
four hydrogen atoms together to.
make a single helium atom. n
the Sun, about 85% of the
energy produced comes from
branch of the proton—proton
chain shown here.
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Figure 15.7 The triple-alpha processes: Two *He nuclei fuse to
form an unstable ® Be nucleus. If this nucleus collides with another
*He nucleus before it breaks apart, the two will fuse to form a stable
nucleus of carbon-12 ("*C). The energy produced is carried off both
by the motion of the '*C nucleus and by a high-energy gamma ray
emitted in the second step of the process.

€] The triple-o. process begins
when two *He nuclei fuse to
form an unstable ®Be nucleus.

y-ray
If this nucleus collides with The energy released is
another *He nucleus before carried off both by the
it breaks apart, the two will motion of the 'C nucleus
fuse to form a nucleus and a gamma ray.
| of carbon-12 (12C). -




(8) (o) Figure 13.8 Neutrino “tele-
scopes™ da not look much like
visible-light telescopes. (a) The
Homestake meninine detector o
a 164} 000-gallon tank of dry
cdeaning fluid located deep i a
peie i Sonth Daleora. (b)Y
The Super Kamiokande detec-
for {shotm before F s oomi-
pletely filled) is a tank contain-
ing 50,000 tons af pure water
strronnded by over 11,000
phetomultiplier tubes thar record
flashes of light from reactions
within the tank. (c) A map of
the flash of light from a single
rettrine detected by the Super
Kamipkande detector




FIGURE 16.18 Overall, the average mass per nuclear particle declines from
hydrogen to iron and then increases. Selected nuclei are labeled to provide
reference points. (This graph shows the most general trends only; a more
detailed graph would show numerous up-and-down bumps superimposed on
the general trend.)

hydogren

uranium

mass per nuclear particle

atomic weight (number of protons and neutrons)



Stellar fusion processes”

PP1 chain
pr+pT—iH+e' +v,
tH+p" —iHe+y

PP 11 chain
p +p = iH+e +v,
*H4p~ —3He++

PP 111 chain
pt+pt —IH4et 41,
TH4pt —3He+y

IHe+3He— 4 He 4 2p~ iHe+3He — [Be+7 IHe+3He — JBe 4y
iBete = iLi+w, iBe+pt =iB+y
Li4pT —23He {B—iBet+et 4,
iBe—27He
CNO cycle triple-a process =
BCtpt =Ny He+3He=3Be+7 7 photon
UN—= " C+et 40, Be+3iHe=1C p'  proton
Be g gt WMN 4y Ber 204y e positron
AN 4+ pt — 50+ e~ electron
v electron neutring
1;[_]—r ';H+E++1't e
BN+ pt—BC+1He

2 Al species are taken as fully jonised,
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