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1. Sphere of action and Hill’s radius, Ry

Consider the acceleration due to the Sun at a distance r: o = GMg,/r?

A small dr generates: da = —2G M, 7%dr

Consider a satellite orbiting a planet at a distance p. Taking dr = p the difference in the
acceleration between planet located at a mean heliocentric distance a and the satellite is da =
2G Mg a% p. The aceleration due to the planet is Gm/p? and when both are comparable the satellite
lost its planetocentric regime and that occurs for a limit value py:

m )1/3

PL :“(2M@

Outside this sphere a planet cannot retain a satellite. A more standard parameter is the Hill’s
radius (derived from the R3BP):

m \1/3
R = (557
H= 93,
Then
SolarTide 2(&)3
PlanetaryAcceleration 3\ Rpg

2. Hyperbolic encounters and impact parameter, o

Once an asteroid is well inside the Hill’s radius (for example when r < Ry /4) of a planet we
can neglect the perturbations by the Sun and consider the hyperbolic planetocentric trajectory of
the asteroid. The equation of energy is

—v

2 r 2a
The planetocentric velocity is vy = |V_; — 17];] which can be considered at infinity because the
term Gm/r can be neglected in front of v?/2. This is valid if v?> >> 2G'm/r at a planetocentric

distance where the sun’s attraction can be neglected. For example at r = Ry /4 the condition

becomes

m
v(km/s) >> 100(~—)*/?
Mg
For example, for the Earth we have the condition v >> 0.02km/s which is almost always
satisfied taking into account that the mean velocity of encounter for the Earth with asteroids is 2
to 3 orders of magnitude greater.
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Then when r ~ Ry /4 is reasonable to assume a) the problem is planetocentric and b) the
asteroid is ”at infinity” with respect to the planet.

The semimajor axis of the planetocentric hyperbola is

Gm

a=—2"
0%

and the angular momentum is
h=0- -ve0=q-v4

being o the impact parameter which can be related to the pericentric distance of the
trajectory ¢:

o=q\/1—2a/qg=q,/1+ %}%’ZZ

A collision with the planet occurs when ¢ < Rpjgnet. We can define the o corresponding to

collision

2G'm

2
(R

oc= Ry [1+

for 0 < o, a collision is certain.

The angular deflection of the planetocentric velocity ¢ is «y (see figure 1):

Gm

tan 2 =
2 ovZ,

or
sin = (14 ov%/Gm)™!

these formulae can be deduced from the conic when the true anomaly tends to infinity: cos fo, =
—1/e = —sin(vy/2).

Total randomization of ¢ is attained if encounters are such that v > 90° which means
o < Gm/v2,. In some cases randomization would be attained only for such o that a collision with
the planet is inevitable.

(see figure 2)

3. Restricted Three-Body Problem, Jacobi’s constant C

Consider a planet revolving a star with circular orbit of radius a (see figure 3). We redefine
units of mass, length and time such that:

1 — m: mass of star



m: mass planet

the mean motion is n? = p/a3

the constant for two body problem is: G(m1 +mz) = u = k2((1 — m) +m) = k?
taking unit of length equal to a and taking unit of time such as to make k£ = 1 then

n=1= 2% then using these units the orbital period of the planet is P = 27w. The linear

velocity of the planet around the star is V}, = na = 1.

We define the system (&, g, 2) which rotates with the planet around the baricenter of the system

with angular velocity & = nz = 12.

Consider a particle located in ¥ = (z,y, z). We can demonstrate the Jacobi’s integral of motion

of the particle where v is the particle’s velocity in the rotating frame:

2(1 —m 2m
gt ay?y 2T 2
1 T2

being r; the distance to mass i and C is a constant.

Demonstration:

The velocity in the inertial frame V and the one in the rotating frame 7 are related by
V=r+ans

The inertial acceleration is @ = —VV where V(7) = —(1 —m)/r1 — m/ry is the gravitational

potential generated by the two masses.

The rotating system rotates with & = 2 then the relationship between inertial acceleration &

and the acceleration relative to the rotating system 7 is
G=T+22ANF+2N(EAF)
but 7= zZ + p being § = (x,y,0)
then
G=F+2:ANT—f
multiply by 7
&= [%-?—ﬁ-ﬁ}
then
&-dif = —VVdF = [F 7 ﬁ]dt

integrating



V() =7 — (@2 +y?) + C

or

v? =2 +y? - 2V(F) - C
then, the particle’s velocity in the rotating frame becomes

2(1 — 2
21-m)  2m _ .
™ 2

v =27 +yt +

C is a constant in the R3BP. If planet’s eccentricity is different from zero C' will oscillate
around a mean value.

4. Tisserand parameter, T

The particle has some orbital elements (a, e, i) and we will make to appear them in Jacobi’s
integral. We need to express position and velocity in the rotating frame (7, ¥') as function of position
and velocity V in the inertial frame.

We have

squaring

02 =V2 -2V - (31 f) + p?

rearranging

=V -2 (FAV) + p?
BT 25 (FAT) 44?4y
vQ—zg-(fm?):02_x2_y2:2<%m+%_0

(in a numerical integration it is easier to calculate C' using the inertial frame than the rotating
one)

According to the two body problem baricenter-particle:

V2=2/r—1/aand 2- (FAV) =2-h=/a(l — %) cosi



then

z2_1_3 a(l— e2)cosi = 2L=m) 4 2m _

1 9

The orbital elements (a, e, i) are referred to the baricenter of the system Star+planet and the
inclination is measured with respect to the orbital plane Zy of the planet. In the case of the solar
system m < 1073 so it is possible to assume that (a, e, i) are heliocentric.

If the particle is not very close to the Sun we have r ~ r; then
1 2 P 1 1
54—2\/@0081*2771[; —51+C

If the particle is far from the sun and from the planet and taking into account that m < 1073
we obtain

1
C~=+2/a(l—e?)cosi=T
a

T is known as the Tisserand parameter. In the R3BP C is constant and T presents some
departures if the orbital elements are determined when the conditions above are not satisfied (near
the sun or the planet). 7" should be considered as a simple form of calculating C'.

For elliptic orbits it is possible to express T'(¢q, @, i) where ¢, Q are perihelion and aphelion:

T = qu +2/240/ (¢ + Q) cosi

This is a useful formula when analyzing regions where encounters are possible (¢ < 1,Q > 1).

(see figures 4-7)
5. Opik begins. The encounter velocity, U

Suppose the particle is near the planet (r; ~ 1 and 2% + y? ~ 1) but far enough that we can

neglect its gravitational attraction (r ~ Rp) so the particle is at infinity” (m/re ~ 0). Then from
Jacobi’s integral:

02 ~14+24+0-T
then, under the hypothesis above, the planetocentric velocity ”at infinity” of the particle is
Voo 2V3—T=U

U is the encounter velocity with the planet before the gravitational attraction is felt by the
particle (that means ”at infinity”). U is determined by T" which is constant, so U is also constant.
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The orbital elements (a, e, i) can evolve but 7" and U remain constant, only the orientation of U is
modified (U rotates v after the encounter).

It follows that when T > 3 encounters cannot exist. When T" < 3 they could exist but they
are not guaranteed. For example: a = 2,e = 0,7 = 90° implies T" = 0.5 but the particle never
approaches the planet.

If U ~ 0 the planetocentric orbit is quasi-parabolic and a temporary capture by the planet is
possible. Then, objects with T" ~ 3 can experience temporary captures by the planet.

The greatest heliocentric velocity the particle can get after the encounter is V, + U = 1+ U.
The escape velocity from the system is v/2, so if U > /2 — 1 the particle eventually can escape
from the solar system and conversely if U < /2 — 1 the particle will never left the solar system by
this mechanism. Note that only prograde orbits have U < 1.

The final heliocentric velocity is a vectorial sum (see figure 8):
V:%—i—ﬁ’ or V2 =14 U?+2U cos¥

being 6 the angle between ‘7;, and U'. If U > /2 — 1 there exists some A~ so that for 0 < 6,
the corresponding V' is greater than the ejection velocity. This situation occurs for

772
cos b = %

If we can assume that U’ is randomized (deflection ~ is so great that € can get all values from
0 to ) then the probability of ejection per encounter is equal to the probability P(6 < 0,)
and this is equal to the solid angle subtended by 6., over 47 which is equal to

U24+2U -1

2 -1 0
o (U >V2—1,7>90°

1
Py =P <6y)= 5(1 —c080) =

Conversely, a comet in an hyperbolic heliocentric orbit has a probability of being captured
after an encounter and is equal to 1 — P,. These results are only valid for encounters satisfying
the conditions (U > v/2 — 1,7 > 90°). These are very strong conditions, for example, a particle
encountering the Earth never satisfies v > 90° with o > o.. So, the P, should be weighted with the
probability P(y > 90°) which is very low. Weidenschilling (1975) recalculate this issue obtaining
more realistic values for the ejection probability (see figures 9-10). In section 9 we explain how to
calculate this issue.

6. Geometry of encounters

The velocity of encounter U form an angle 6 with the planet’s heliocentric velocity (1_/;, =7)
and is rotated an azimuthal angle ¢ around g (see figure 11). Then:



U, = Usinfsin¢
Uy, =U-cos?t
U, = Usinf cos ¢

Assuming the asteroid is encountering the planet: 7 = 1 and V? = 2 — 1/a. The "angular

momentum” is /a(l —e2) = rV;, where V; is the transverse velocity. In consequence the radial

velocity evaluated at r =1 is

VZ=V2-V2=2-1/a—a(l—¢é?

The encounter with the planet occurs at the line of the nodes of the asteroid’s orbit then (see figure

12):

Vy = Vicosi
V, = Visin1
Vx:‘/r

Then the relative velocity U=V - Vp = (V,Vy — 1,V,) has components

Uy =+/2—1/a—a(l —¢2)

minus sign is for encounters at pre perihelion passage (7 < 0)

U, =+a(l —e?)cosi—1

U, = :I:\/m sin ¢

minus sign is for encounters at the descending node of the asteroid’s orbit (2 < 0)

Conversely

1

a4 = 1—p7 9,

e = \/U4 +4U2 + U2(1 — U? — 2U,) + 4U2U,

. Uz
1 = arctan 40,
or also

. U?
sin?

L= T4 T,)?

)

If we define the heliocentric ”energy” of the particle as x = 1/a then we have
r=1/a=(1-U?-2Ucos®)
and the variation in the energy due to the encounter is

Ax =1/a' —1/a = 2U(cosf — cos &)
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Maximum variations in energy are (see figure 13): Az = 2U(1 — cos~y(o,U))

7. Probability of encounters, p

Consider an asteroid in an heliocentric orbit with ¢ < 1 (see figure 14). It crosses two times
the sphere of radius » = 1. We will find an expression for the probability of encounter with the
planet inside an impact parameter . We know that at » = 1 the radial velocity of the asteroid is
V. = U;. Then the time spent in the spherical shell of thickness dr and radius 1 is:

dt = 2dr /U,

The probability per revolution to find the asteroid in the shell is:

dN = dt/P
being P the orbital period. The asteroid only can be found inside a band which is bounded
by two parallels of latitude +i (see figure 15) and whose volume is
dV = 47 sinidr

Assuming €2 and w circulating, the average density of the asteroid in the volume is then

0i = dN/dV

Near the reference plane (where the planet revolves) the density is something small because of
the higher rate of variation of the latitude near the node of the asteroid. An analogy with the Sun
can help: the variation rate of the altitude of the Sun is higher at sunrise or sunset than at noon.
Taking this into account it is possible to show that the mean density near the reference plane is

2
Qo = —0i
™

The planet is moving with respect to the asteroid with velocity U and it defines a small cylinder
with radius o per unit of time given by

dV/dt = no?U

then the number of encounters per revolution is

av/dt- o, - P
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substituting

2 2dr 1 p
7 |Uz| P 47 sinidr

2
70*U - ZdN/dV - P = no?U -
T

then, the probability of an encounter with impact parameter < o per revolution is

(0) o?U
o) = ————
b msini|U,|

This is the famous formula given by ()pik (1951), valid for 0 < Ry where the two body scheme
can be applied.

The mean number of orbital revolutions between these encounters is
v=1/p

and the time in years between encounters (P is the orbital period)
T=vP=a"%/p

where q is in astronomical units.

The function p is a cumulative probability function. If we are interested in the probability of

having encounters with impact parameter between o and o + Ao:
d
plo+Ac) —p(o) = Ap = F£Ac
then
20*U

oY for o*
msini|Uy| (for o™ < Ru)

plo=0") =

Taking into account the probability density function above we can calculate the mean value

< o > of the impact parameter for all possible values from 0 to Ry (limit of validity of two body
approximation):

2
<o>=-R
o 3l

The function p may vary between encounters because of variations of i and |U,| but if we have
a population of N objects with similar orbits given by a distribution of orbital elements which
can be considered in a steady state, an average probability of the encounter per revolution can be
devised:

p = Xp;/N
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If p represents the probability of elimination by collision with some planet or by ejection from
the population, the average lifetime of the particles in years can be estimated by

F=<a>"/p
where < a > is the mean semimajor axis of the population.

Annually will be eliminated N/7, then the population will evolve as
dN = —(N/7)dt
and the fraction of surviving objects after ¢ years will be:
N/N, = e U7

This exponential decay was critically revised by several authors (see figures 16 and 18). Nu-
merical integrations in general show that the population decay exponentially at the very beginning
and then a power law decay follows (N/N, o t%).

Example. Consider a NEO with (a,e,i) = (2,0.7,10°) and calculate the collision probability
with Earth. We obtain T = 2.489,U = 0.715,U, = 0.69, then p(c.) = 1.9 - 02 and taking into
account o, = 4.9 x 1075 we obtain p, = 4.5 x 10~ which gives 7 = 628 millon years.

8. Omnidirectional encounter probabilities

After N encounters the mean total deflection I' of the relative velocity U can be estimated
from

[? =3y} = Ny

where 7 is a mean value generated by the mean encounter parameter < ¢ >. We can adopt
I' = /2 for full randomization, then the mean number of passages with o < Ry necessaries for
full randomization of -y is

N =7*/(47°)

For the example given above we have < o >= 6.7 x 1073 and 4 = 1.8 x 1073 radians. Then
full randomization is acquired after N ~ 800000 encounters with ¢ < Rpy. N is not the number
of revolutions just the number of encounters with ¢ < Ry, we need to consider the probability
p(Rg) = 0.00019 and the time between these types of encounters 7 = 14900 years. Then, to
acquire full randomization it is necessary to wait for ¢ ~ 11600 millon years. That means it is more
probable a collision with the Earth before full randomization.
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For small U we have large values of v and N is relatively small, then we can assume that the
vector U is randomized so we can assume equipartition

<UZ>=<U; >=<UZ>=U*/3

and taking into account < U, >= 0 we can estimate the mean orbital elements for a population
having omnidirectional encounters with the planet:

5 2
2 2 2
=-U"(1+-U
<e” > 3 ( 5 )

U2

. 2.
< >= 0
I T7e

. . . U ..
then we can substitute U/|U,| by its average value v/3 and sini by s TiEl obtaining the
encounter probability under the condition of randomization

3\ /14302

p(o) = —0 ° (U randomized)

9. Modeling the orbital evolution

Arnold (1965) devised a Monte Carlo method (reformulated by several authors) to simulate
the orbital evolution of asteroids encountering the planets using the probability function obtained
by Opik. Consider the spherical triangle whose sides are given by 6, ~, ¢’ (see figure 17):

cos 0’ = cos 6 cos~y + sin 6 siny cos ¢

defining

xX=9¢—¢

we can write

sin x = sin siny/ sin ¢’

cos Y = (cos~ysinf — sin~y cosf cosv))/sin 6’

Then we can simulate the evolution as follows:

We have an asteroid with (a,e,i). Check that ¢ < 1 and @ > 1.
Calculate U and (Uy, Uy, U) taking aleatory sign for Uy, U..
Calculate (6, ¢).
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From a probability distribution function proportional to o we choose the impact parameter at
random (0 < 0 < Rg)....(do you know how to do this? .... change to a variable y that has uniform
distribution then odo = dy integrating: o = /2y, so choose at random with equal probability y
and calculate o). This is equivalent to choose at random ¢ from a uniform probability function
between 0 < 02 < RJQLI.

If o < o, the particle impact the planet. If not, calculate the corresponding deflection angle ~.
Compute the mean time 7 for this event and compute the time as t' = ¢ + 7.

From a uniform probability distribution choose the azimuthal angle ¥ at random (0 < ¢ < 27).
Calculate 6'(0,,1).

Calculate x(6,~v,v,6").

Obtain ¢' = ¢ — x.

Calculate the new (U, Uy, U;)

Calculate the new (a,e,i). If a < 0 the particle is ejected.

Choose a new set (o,).

If the asteroid’s orbit intersects various planets, the modeling must include the encounters with
all them.

Using the scheme above it is possible to numerically calculate the probability that the asteroid
experience some variation in its orbital elements. For example, if we want to know the probability
of having a certain Ax in its energy we choose at random with uniform distribution several points
in the space (02 < 02 < R%{, 0 <1 < 27) and calculate the corresponding Ax. If that value is the
one we were looking for we increment a unit in a counter. After N points in the space (02,1) we
will succeed in Ny points. For N — oo we can obtain the probability

p(Az) = 22 - p(Rn)

where p(Ryy) is the probability of an encounter with impact parameter below Ry calculated with
the Opik’s formula.

10. Theory of diffusion

Previous to Opik work some authors (Van Woerkom 1948, Oort 1950) analyzed the evolution
of the orbital "energy” x = 1/a of the comets as a diffusion problem.

If < 02 > is the mean squared energy change per perihelion passage, the total mean change in
energy, Az, after N passages verify
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<Axr>2=N<o2>

The number of passages necessaries to make Az = z is N = 22/ < ¢2 > and the number of
years required is

tp =Nz 32 =g2) <02 >
this is the energy diffusion time.

From Yabushita (1980) it is possible to show that the median lifetime (when half of the
population is ejected) is tyeq ~ 4.77tp. A comparison of different models applied to simulate the
evolution of Chiron is given at figure 18.

11. The problem of the asymmetries

Everhart (1969) numerically found that parabolic comets encountering Jupiter have not equal
probability of increasing or decreasing its orbital energy = 1/a. That was known as the problem
of the asymmetries in the distribution of the Az due to the planetary perturbations. Considering
the Opik formulation Carusi et al. (1990) explained the asymmetries as a natural consequence of
the outcomes of the encounters. For example, a parabolic comet with ¢ = 0.1ay and 7 = 27° has
T = 0.797 and U = 1.484 with respect to Jupiter. The maximum allowed changes in energy are
Az =1 — U? £ 2U which corresponds to Az = —4.17 and Az = +1.77 so is reasonable that for
this example negative changes Ax are more probable than positive changes, that means ejection is
more probable than capture (see figure 19).

12. Some conclusions

The method as originally presented by Opik in general overestimates the mean lifetime of the
populations because it does not take into account the strong changes in e due to the resonances
(see figure 20).

It cannot be applied to populations with very small U (see figure 21).

Collision probabilities predictions are consistent with numerical integrations (except collisions
with Sun).

It can be generalized to eccentric and inclined planetary orbits.
It gives order of magnitude valid results and it is very fast.

Numerical integrations in general show that the population decay exponentially at the begin-
ning and then a power law decay follow (N/N, o t%).
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Final

velocity

on out-going
asymptote

PLANE‘T- Heod-on relative velocity, 1]

“So_ Relative velocity, V

F1G. 2. The Opik method. Approach velocity V (for
impact parameter b) is assumed equal to U, the veloc-
ity for a head-on collision (b = Q) with the planet. V is
taken as the asymptotic approach velocity for a two-
body hyperbolic encounter. Closest approach d and
rotation angle y are based on the two-body encounter
(see Eqgs. (1) and (2)). The final velocity has the direc-
tion of the outgoing asymptote and the magnitude V.

Fig. 1.— Asteroid encountering a planet. Greenberg 1982.

Deflection angle y for encounters with Earth

N 110Ry
30 0 \ |
s 90
< o1 I
b
)
B 150
< T~ <
= 0. 001 | o
o
o
©
g \ ]
oo /A 30
N N —Rearth
0 o1 0.1 '

encounter velocity U (Earth's velocity = 1)

Fig. 2.— Deflection angle (o, U).
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Fig. 3.1. A planar view of the relationship between the sidereal coordinates (£, 1, £)
and the synodic coordinates (x, y, z) of the particle at the point . The origin O is
located at the centre of mass of the two bodies. The ¢ and z axes coincide with the axis
of rotation and the arrow indicates the direction of positive rotation.

Fig. 3.— R3BP, rotating and inertial frames. Murray and Dermott 1999.
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Qla_p

Fig. 4.— Tisserand parameter T'(q,@Q,7 = 0). The region below the diagonal is not real.
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Fig. 5.— Tisserand parameter T'(¢, Q,7 = 0). The region where encounters are possible.
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Fig. 1. Short-period comets (solid circles) and asteroids (open circles) plotied on a scatter dia-
gram of semimajor axis vs eccentricity (Kresdk 1985). Increasing circle size indicates esti-
mated size of the objects: diameter < 1 km or lost, 1 to 3 km, 3 to 10 km, 10 to 30 km and >
30 km. Different regions identified within the diagram are: (A) transjovian region, (B) Jupiter
domain of weak cometary activity, (C) Jupiter domain of strong cometary activity, (D) minor
planets region, and (E) Apollo-Aten region. The dashed line going from upper left to lower
right corresponds to a Tisserand invariant of 3.0, the usual dividing line between comets and
asteroids. However, note the several asteroids above the line in the cometary region C; the
figure has been modified to include seven new asteroids in or near region C discovered since
Kresik's (1985) work was published.

Fig. 6.— Kresak’s diagram. Regions B and C corresponds to T' < 3 and regions A, D and E to
T > 3. Asteroids II.
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Figure 14.12. Position of known comets in the plane of the Tisserand parameter T and the
ratio a, /a between the semimajor axes of Jupiter and the comet; the unphysical regions are
in dark grey. Dashed lines indicate the values T = 2 and 3 (see Fig. 14.11); the thin dashed
line labelled ¢ = 2.5 shows T for a 2.5 AU perihelion comet in the ecliptic (objects above and
to the left of this curve are very difficult to detect because they never get close to the Sun).
Adapted from H. Levison, Comet taxonomy, in: Cempleting the Inventory of the Solar System,

~ 920 —

a,,«‘a

Asteroids

1.5 2

eds. T.W. Rettig and J.M. Hahn (Astronomical Society of the Pacific), p. 173 (1996).

Fig. 7.— Populations of minor bodies in space (1/a,T'). Bertotti et al. 2003.



~91 —

E Yo G

Fig. 11. Heliocentric velocity v as vector sum of U and v, .

Fig. 8— Opik 1976.
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Fig. 9.— Collision versus ejection for terrestrial planets. Weidenschilling 1975.
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Fic. 4. Probabilities of collision (dashed lines) and ejections
(solid lines) for Jovian planets, from Egs. 19 and 29. Also shown
are fractional solid angle of the escape cone and Opik’s ejection
probability for Jupiter from Eq. 42.

Fig. 10.— Collision versus ejection for jovian planets. Weidenschilling 1975.
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~Y

X

Fig. 1. The frame of reference of the vector U. The origin is at the planet’s centre, the y-axis is oriented

in the direction of motion of the planet, the x-axis is in the opposite direction with respect to the sun, the

z-axis is parallel to the planet’s angular momentum vector. The direction of U is provided by the two angles
6 and o.

Fig. 11.— Orientation of U in the rotating frame. Carusi et al. 1990.

Fig. 12.— Angular orbital elements referred to an inertial system.
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Max orbital energy change (AUl) for encounters with Earth
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Fig. 13.— Maximum possible changes in orbital energy x = 1/a for encounters with Earth.

Fig. 14— A collision orbit. Bottke et al. 1997.
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Fig. 5. The crossing volume of presence.

Fig. 15.— Crossing region. Opik 1976.
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Initially Neptune—crossing objecls
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Fig. 16.— Fraction of survivors according to Opik modeling and numerical integrations. Dones et

al. 1999.
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Fig. 2. After the encounter the vector U is rotated by an angle y in the direction given by . This last is the
angle (counterclockwise) from the meridian RP, containing the velocity vector. After rotation, the direction
of U is given by the angles ¢’ and ¢'.

Fig. 17— New and old encounter velocity U. Carusi et al. 1990.



,29,

Random walk

Opik code

04 -

Integration

o
»
T

Fraction surviving

0.1 - -

Time (Myr)

Figure 2. (a) Number of surviving objects as a function of time from
our integrations. (b) Number of surviving Chirons vs. time from (a),
plus the same quantity computed by an Opik calculation and the diffu-
sion approximation. For comparison with the diffusion approximation,
we also have computed a symmetric random walk in energy with a fixed
step size equal to 1/{02). In the integrations, exponential decay (shown
by the straight line) is a good approximation at early times (¢ < tyeq)-

Fig. 18.— Fraction of survivors according to different models. Dones et al. 1996.
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Fig. 9. Log-log plot of the cross section ¢ of fictitious comets scattered by Jupiter versus the
corresponding (1/a) perturbation per unit mass; upper curve: negative variations; lower curve: positive
variations. This figure should be compared with Everhart (1969) Figure 1. Arbitrary units.

Fig. 19.— Asymmetric tails in the distribution of Az. Carusi et al. 1990.
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OPIK CODE VS ORBITAL INTEGRATION
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Fig. 20.— Opik method cannot take account for resonances. Dones et al. 1999.

expected vs. actual impacts
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Fig. 21.— Opik method fails when U is near zero. Dones et al. 1999.



