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Forces
Generated by

o gravity (Newtonian and relativistic) due to Sun, planets, satellites, asteroids.

Model: N point masses + perturbations due to oblateness.
e solar radiation
e medium: solar wind, gas drag.
e magnetic fields: Lorentz forces.

e collisions!
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they are produced

Drate: 2004003025
Petr Scheirich, 2004

All them have very similar orbital elements
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ECCENTRICITY versus INCLINATION

In the space of orbital elements the asteroid population shows several concentrations

by several fragments generated after a catastrophic collision.
and constitute a FAMILY.
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Solar radiation generates several dynamical effects:

e radiation pressure (pum): in the direction of the radiation
e Poynting-Robertson drag (c¢m): (Doppler) opposite to velocity generates migration to the Sun

e Yarkovsky effect (from m to km): (thermal inertia) depending on rotation generates migration to

or from the Sun

e sublimation in comets (ask to some experts here in this room....)
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After a collision a family is generated: the smaller fragments (higher magnitude) are
the most affected by Yarkovsky (so, the most dispersed). This effect can help us in the

determination of the age of the family.

Forces
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For most of the solar system’s bodies we can follow the scheme:

total Force model

point mass solar Newtonian gravity

_|_
several small perturbations
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An isolated body
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The field generated by the Sun

Consider a spherical Sun with density p(r). Consider the origin at the Sun’s center
and a particle located at 7

—

F= —GMy— = —VV
T

QM
.

V =

" potential” (the "energy” is conserved)

This second order equation admits the following integrals:

constant "angular momentum” FAT=h (motion is planar)
2
" " v GM@
constant "energy E = 5~
/'a

In polar (r, f) coordinates the trajectory satisfies:

~a(l—e€?)
~ 1l4-ecosf

r(f)
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which is a conic with semimajor axis a and eccentricity e (first law of Kepler). Defining
1 = GMg we can show that

L4
&= "o
and
h? = pa(l — e?)
E 1/a conic e
- — ellipse 0<e<]
-+ - hyperbola e>1
0 0 parabola 1

A very useful formula deduced from equation of energy is:

2 1
<D
r a

from which we obtain two very important velocities: the circular (r = a) velocity

2 1
g:u( __>:>UC: H

r=a a r
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and the escape (a = c0) velocity

2 1
vgzu(———)zve:ﬂvc

T 0

A particle located at a distance » from the Sun will have an hyperbolic orbit if its

velocity verifies v > v/2v,., no matter the direction is.

Another important velocity is the velocity at infinity (r =

particle has when the term 24 /r can be neglected in front of v?

Voo does not exist for ellipses and v,, = 0 for parabolas.

An isolated body

00), the one that the
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Semimajor axis is determined by the modulus of r and v, but the eccentricity is defined
by
pa(l —e?) = h* = [FAY)?

so it depends also on the angle between 7 and v
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Second and third laws of Kepler

By definition )
d d
h = |r A4 :r-r—f:2—: constant
dt dt

then the areolar velocity is constant (second law of Kepler). In the particular case of

an ellipse:
area ellipse mab

h \/,ua( ) orbital period P

operating, the mean angular velocity called mean motion is:

27 L
n —m— — — —_—

P a3

which is the third law given by Kepler. The orbital period P only depends on the
semimajor axis.

An artificial satellite orbiting the Earth at a = 42160kms has an orbital period exactly
equal to the rotation period of the Earth and is called an " geosynchronous satellite”.
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Orbital elements

The second order differential equation

—

-, ’r‘
= —l—
r3

has 6 independent integrals of motion (a, e, 7, w, ), T') determined by the initial conditions
(Tos Yos 2oy Tos Yoy Z0). T hese integrals of motion are called orbital elements:

e a and e define the shape
e ¢, w and () define the spatial position of the orbit

e T defines the instant of the passage by the pericenter

and they are constant.
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A non spherical body

If the body is not spherical

—

7= —u% + VR(71)

where R is called DISTURBING FUNCTION. Considering the same initial 7 and ¢ the
resulting motion is a perturbed conic, that means, varying with time.
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There is an "orbital evolution” given by (a(t),e(t),i(t), w(t),Q(t), T(t)). For a given
EPOCH t, (for example now, JD2454305.25) we have an instantaneous "osculating” orbit
given by the set (a(to), e(t,), i(to), w(to), (to), T(t,)).
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Two—Body Problem
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Two—Body Problem

The bodies accelerate each other

—-0.5 0
x / a

(from Fitzpatrick)
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Sun 4+ Planet

The planet m accelerates the Sun, then it is not more inertial and we cannot apply
Newtonian laws directly with origin in the Sun. We can take the baricenter as an inertial
origin and we can write the equations of motion related to this frame:

Mg m

r'Sun e "pla ).
. Baricenter A

—

- - T

B} . 7
Fola = mrpq = —GM@mﬁ

being ¥ = 714 — sun the position vector of the planet relative to the Sun.
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Operating:

. . F,, Fs 7
", ", i pla un
= Thla — FSun = — = —-G(Mo+m)—
-, T
—r+pu—z=0
T

being the same equation of the conic but now with = G(Mg + m).

The motion of a planet of mass m around the Sun is equal to the motion of a

massless particle around a star with mass (Mg + m).

Two—Body Problem
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The shape of the orbit

Properties of the
ellipse

y=rsinf

apocentre N\
A _/ ae pericentre
empty focus

reference
direction

bz:a2(1—€2)< ¢ > =0

(from Carl Murray)

pericentre: r(f =0) =a(l —e) = q, apocentre: 7(f =7) =a(l+e)=Q
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Orbit in space
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plane
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(from Carl Murray)

The elements (), w, 7 need some reference plane and some reference direction, for example,
the ecliptic and Aries corresponding to 2000.0.

Two—Body Problem .



N-Body Problem
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General N body problem

We start with N second order differential equations in vectorial form:

T

N S S
77@ = —G Z ijJ—STZ

j=1 J
That system can be transformed to a system of 2N first order differential equations.
According to a theorem (from differential equations) we need 2N x 3 integrals of motion
in order to resolve the system. Unfortunately there exist only 10 integrals, then for N > 2
the N body problem has not analytical solution. We can instead obtain the numerical

solutions 77;(t) which are unique.
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10 integrals of motion

= [N ol H
An isolated system verifies constant momentum P

N N

H

P = E m; v ;= Upar E m; = constant
=1 =1

so its barycenter moves with constant velocity, it is inertial and we can take it as the
origin of coordinates. Then:

Upar = (linear comb. of ¥;) =0 (3 constants of motion)
and also
T par = (linear comb. of 7;) =0 (3 constants of motion)
Angular momentum is also constant:
N
L= ij?>j X ¥ ; = constant (3 more constants)
j=1
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— . : . L
The fact that L is constant means there is a preferred spatial direction. The plane
perpendicular to this direction is called the fundamental or invariable plane.

Total energy:

J—
mgm;

= constant (1 more constant)
Tk

N 1
E=T+E,= ij -Gy
1=1 k=1

These 10 integrals are not enough to resolve analytically the system of N vectorial second
order differential equations
N — —
:, T - TZ
ri=-GY m;~to—

ji
but we can solve it numerically using appropriate algorithms called " numerical integrators™ :
MERCURY, SWIFT, HNBody, OrbFit, EVORB, and many others.

For each body we obtain

(1), y(t), 2(¢), £(t), y(t), 2(?)
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Time evolution of the Solar System’s energy
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100 years of motion of the Sun around the baricenter
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Extraterrestrial civilizations could detect this motion (don't panic).

N-Body Problem 29/82



18-

Voaq (ML 871)
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Orbital Phase

(from ... somewhere...)
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Planetary theory
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Planetary problem: N planets + Sun

The planetary problem can be considered as an (N-+1) body problem with a dominating
mass (the Sun). We can transform the (N+1) vectorial equations relative to the baricenter
to a sistem of N heliocentric equations:

7 N Po_F 7
5 7 7 — I 7
Fi=—pig Gy mj| g —
(= e T T

JFi J

pi = G(Mg + m;)

heliocentric acceleration = two-body + direct pert. by m; + indirect pert. by m;

planetary motion = two-body problem + small perturbations

Instead of solving the rectangular heliocentric quick varying coordinates (timescale of
days)
(1), y(t), 2(t), 2(t), y(t), 2(t)
we can solve the heliocentric slow varying parameters (timescale of centuries)

a(t), e(t),i(t), w(t), At), T(t)
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Perturbation Theory

For a given planet it is possible to write the equation of motion in the form

—

=, r - o
T+/LFZVR(T1,...,TN)

where R is the Disturbing Function. It is possible to transform this equation in another
very different form due to Lagrange (+ Euler + Laplace):

da 2 OR
dt na O\
de
dt
d
dt
dwo
dt
dQ2 1 OR
dt na2v/1 — e2sini 01
dT
dt
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6 equations for each planet where R is a very unfriendly function
R = R(al, ey AN, €1, ..., EN, il, voey iN, Wily...y, WN, Ql, vony QN, )\1, veey )\N)

In general it is a function depending on 6 X N variables and to obtain that expression for
R it was not a trivial issue:

R = Z F(a,e,i)cos[S(\ w, Q)]

where functions S(\, @, (2) are linear combinations of A, w, (). The X are quick varying
angles, on the contrary w, ) are slow varying angles. Then:

R = Rsp(a,e,i,w,Q,\) + Rrp(a, e, i,w,Q)

The short period terms usually cancellate (please theoreticians close your eyes) and we
can assume

R~ Rpp(a,e,i,w,Q)

this part of the disturbing function is the responsible for the long term secular evolution
of the system.
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Taking R ~ Ry p the first of the Lagrange’s planetary equations becomes:

@N 28RLP—O
dt — na O\

then the semimajor axis of the planets do not change with time...
the planetary system do not shrinks nor expands!!!

That was a very impacting result of the XVIII century due to Euler, Lagrange and
Laplace. It is also possible to show that e and 7 do not grow systematically but oscillate.
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the band

Jacobi

LeVerrier Hamilton Birkoff Poincaré

(from Carl Murray)
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Venus, Earth and Mars in the next 5 Myrs: a(t)

(UA)

semieje orbital

millones de a#os desde el presente

Results from the numerical integration of the exact newtonian equation of motion of
the Solar System. Congratulations to Euler-Laplace-Lagrange!!!
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Venus, Earth and Mars in the next 5 Myrs: e(t)
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Fundamental Frequencies and Chaos

If planetary orbits are not very close and with small eccentricity it is possible to show
that the system will oscillate with 3N -almost well defined- Fundamental Frequencies:

e N high frequencies are associated with the orbital periods (years) and generate small
oscillations in a

e N low frequencies are associated with the " precession” of the perihelia and generate
oscillations in e (10° — 109 years)

e N low frequencies are associated with the motion of the orbital nodes and generate

oscillations in 7 (10° — 10° years)

The first set of N frequencies is not related to relevant variations in the orbital elements
so usually are ignored. The last two sets of N frequencies are known as the fundamental
frequencies of the Solar System.

Planetary theory 39/82



If these frequencies are well defined (that means, constant) the system is quasi-regular
and stable. If these frequencies are not well defined (varying with time) the system is
chaotic and the chaotic behavior will be appreciable after some timescale.

Our Solar System has not fixed fundamental frequencies then ..... is chaotic.
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So...

the planetary system is stable and chaotic ...

e According to the perturbation theory (semimajor axes are constant) the system is
STABLE.

e According to the N-body problem the future of the system is DETERMINED (only
one solution exists) but CHAOTIC (hard to predict).

e According to modern numerical integrations the planetary system is under STABLE
CHAOQOS: we can predict reasonably well the orbital evolution but not the exact
position of the planets in their orbits.
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Numerical integrations versus theory

Nowadays theoretical analysis is used not just to obtain analytical solutions but to
provide theoretical explanations to the very precise solutions obtained with the numerical
Integrators.

Everybody can obtain a precise numerical solution of a dynamical problem but only
with the understanding of the theory we can explain the results obtained.
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Resonances
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Resonances

They happen when a simple commensurability exists between some fundamental
frequencies of the system (orbital periods, rotational periods, perihelion motion, node
motion)

e orbit-orbit (mean motion resonances)

e asteroids with Jupiter (3:2, 2:1, 1:1)

e TNOs with Neptune

e Pluto-Neptune (2:3)

e quasi resonance Jupiter-Saturn (5:2) and Uranus-Neptune (2:1)
e galilean satellites of Jupiter, Uranus satellites, rings

e spacecrafts

e spin-orbit

e Earth-Moon (1:1)
e Sun-Mercury (1:2)
e Pluto-Charon (1:1)

e secular resonances: orbital plane involved (w, (2). Fatal destiny: collision with the
Sun.
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Is the resonant motion a common dynamical state?

For example, mean motion resonances with a given planet are located at

N1>2/3

n-Ny>~n, Ny or a:ap(ﬁ
2

with Np, Ny arbitrary integers. Then, resonances occur at very precise positions. Is it
probable that an object be located at the exact position of the resonance?

Yes
Why?

At least three reasons:

e there are several, several resonances

e resonances have some strength and stickiness, they can "attract” trajectories to

them

e there are mechanisms (like Yarkovsky, tides, gas drag) that drive the objects to the
resonances and there is a chance to be captured by them

Resonances 45/82



0.1

0.01

0.001

0.0001

1e-05

Resonance’s Strength

1e-06

1e-07

1e-08

Resonances

Resonances everywhere

e=0.05, i=10

- w

I e |

1

}

H

0.1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

______________ |

1 10 100
a (AU)

Strengths for low eccentricity orbits.

46/82



0.1

0.01

0.001

0.0001

1e-05

Resonance’s Strength

1e-06

1e-07

1e-08

Resonances

Resonances everywhere

1 =05, 1=20

k|
w b }

1 10
a (AU)

Strengths for high eccentricity orbits.

il w L :

_______________________

]

47/82



Resonance capture due to Yarkovsky
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(Bottke et al. 2000)

Then, high eccentricity orbits (and sometimes high inclination orbits) are usually in

resonance. A notable example is the orbital evolution of the population of NEOs, comets,
TNOs and SDOs.

The resonant motion only appears after several orbital revolutions, it is not an
instantaneous effect.
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The Main Belt of asteroids is shaped by Jupiter
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Three—Body Problem
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Sphere of action and Hill’s radius, Ry

Consider the acceleration due to the Sun at a distance r:

o =GMg/r?

Mg

A small departure dr generates a variation (a tide):

1
da = 2GMg—dr
r
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Now consider a satellite orbiting a planet with mass m at a distance A.

A

m

Taking dr = A the difference in the acceleration between planet located at a mean
heliocentric distance a and the satellite is

1
a

The aceleration due to the planet is
a, = Gm/A?

and when both are comparable (da = «,) the satellite loses its planetocentric
regime and that occurs for a limit value Aj:
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Outside this sphere a planet cannot retain a satellite. A more standard parameter is
the Hill's radius (derived from the CR3BP):

m \1/3
=)
H 3Mo
It follows that _
solar tide _ da ( A )3
planetary acceleration  a, Ry

At a distance A < Ry /4 for example, the tides due to Sun are negligible. When a
spacecraft, comet or asteroid is having a close encounter with a planet we can neglect
the solar perturbation and consider only the planetocentric orbit of the body (usually
an hyperbola) as a first reasonable approximation.
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Hyperbolic encounters and impact parameter, o

Hill's sphere

™ hyperbolic
orbit

deflection

planet

impact
pararmeter

asymptotes
of hyperbola
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Planetocentric orbit

Once an asteroid is well inside the Hill's radius of a planet (for example when
r ~ Ry /4) we can neglect the perturbations by the Sun and consider only the hyperbolic
planetocentric trajectory of the asteroid. The planetocentric velocity is

U = ‘Vast — Vpla|

and taking © = Gm we can write:

In general

UQ(T ~ Ry /4) ~ ?)2(7“ =0) = _H

a

Hill's radius is a small distance from an heliocentric point of view but a large distance
when observed from a planetocentric point of view.
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Then when r ~ Ry /4 is reasonable to assume

e two-body problem asteroid-planet

e the asteroid is "at infinity” with respect to the planet

The semimajor axis of the planetocentric hyperbola is

L

a=——7
2
/UOO

and the angular momentum is
h=0- v =¢q-v,

being o the impact parameter which can be related to the pericentric distance ¢ of
the trajectory:

2
qux/12a/q=q\/1+u

2
V504
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Hill's sphere

™ hyperbolic
orbit

deflection

planet

impact
parameter

asymptotes
of hyperbela

A collision with the planet occurs when ¢ < Rpanet-
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The angular deflection of the planetocentric velocity ¥ is +:

sin% = (14 ov2 /p)t

it can be deduced from the equation of the conic when the true anomaly tends to infinity

coS foo = —1/e = —sin(v/2)
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The new heliocentric orbit

After a close approach the planetocentric velocity of the asteroid rotates an angle ~
and the new heliocentric velocity will be different

—

7 17 7
V ast — Vpla + v
consequently the heliocentric orbit will be different

close
approach

orbit of
/ comet

J«— orbit of
\ Jupiter

(from Murray and Dermott)
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CR3BP: Jacobi’s constant C

particle

Consider a planet revolving a star with circular orbit of radius a. We redefine units of
length, mass and time such that:

a =1 (my new unit of length)
1 — m: mass of star

m: mass planet

G=1
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the mean motion is n? = G(1 — m + m)/a® = 1 rads per unith of time, but

_27‘(‘

—1
" P

then using these units the orbital period of the planet is P = 27. The circular velocity of
the planet around the star is V, = na = 1.

We define the system (Z, ¢, 2) which rotates with the planet around the baricenter of
the system with angular velocity
W=nz=12

Consider a particle located in 7= (x,y,z). We can demonstrate (see Appendix) the
Jacobi’s integral of motion of the particle where v is the particle’s velocity in the rotating
frame:

C=zx"+y" + +— =

(' is a constant in the CR3BP. If planet’s eccentricity is different from zero C' will oscillate
around a mean value.
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Zero velocity curves

Motion must verify

v =x"+y° + + —C >0
1 T2
then, the surfaces
2(1 —m 2m
1 T2

define regions where the motion is confined. These are the zero velocity surfaces. They
cannot be crossed. We do not have an analytical solution to the problem but we can
determine regions where the motion is allowed.

Given some initial conditions, the constant C' is defined and the zero velocity surfaces
are determined. We can explore these surfaces intersecting with the orbital plane of the
planet (z = 0).

We start with a particle having high C, that means r; ~ 0, r5 ~ 0 or 22 4+ y? — oc.
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for a lower C' it appears the first (unstable) equilibrium point
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then, the second (unstable) equilibrium point
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For some C values nice temporary captures can occur



Three—Body Problem
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...and the third (sorry, also unstable) equilibrium point
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Finally, the stable ones appear when the zero velocity curves collapse into points
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Equilibrium points

They are obtained looking for

There are only five and all them in the plane z = 0.
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) o )

It can be showed that L4, Lo, L3, L4, L5 are the only equilibrium points and only Ly, L5
are stable. The distance from L1 and L2 to the planet is the Hill's radius Rg: the
farthest distance allowed for a permanent satellite.
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Quasi satellites

y (orbital radii)
o
|

x (orbital radii)

(from Wiegert et al. 2000)
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Quasi satellite of Venus
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Quasi satellite of Earth

2004 GU9 |
Sun-Earth

System : Su
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Tisserand parameter, T

It is possible to write Jacobi's integral C'(v,x,y,2) as a function of the osculating
heliocentric orbital elements of the particle (see Appendix):

1
C~-+2ya(l—e2)cosi=T
a

expression which is valid if the particle is far from the Sun and from the planet and
taking into account that m < 1073. T is known as the Tisserand parameter. In the
CR3BP, C' is constant and 1" presents some departures only if the orbital elements are
determined when the conditions above are not satisfied (near the Sun or the planet). T
should be considered as a simple and approximate form of calculating C.
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(from Murray and Dermott)

After a close encounter with a planet the orbital elements (a,e,4) will change but C' and

T" are conserved.
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The encounter velocity, U

Suppose the particle is near the planet (then r; ~ 1 and z% + y* ~ 1) but far enough
that we can neglect its gravitational attraction (say r ~ Ry, where m/ro ~ 0) so the
particle is "at infinity”. Then from Jacobi's integral:

2(1—m)+2_m_0

1 o

v = 2% 42 +

v, ~14+2+0-T

then, under the hypothesis above, the planetocentric velocity "at infinity” of the
particle is

Voo =2 V3I—T =U

U is the encounter velocity with the planet before the gravitational attraction is felt
by the particle (that means " at infinity”).

U and 1" are constant
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The orbital elements (a,e,i) can evolve but T and U remain constant, only the
orientation of U is modified (U rotates «y after the encounter).

It follows that when T > 3 encounters cannot exist.

If U ~ 0 (T ~ 3) the planetocentric orbit is quasi-parabolic and a temporary capture
by the planet is possible because a slight perturbation can transform the parabola into an
ellipse. Then, objects with 1" ~ 3 can experience temporary captures by the planet.
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The greatest heliocentric velocity the particle can get after the encounter is (assuming
U//Vp):

V,4+U=14U

The escape velocity from the system is \@V;Q — V2 s0if U >+v2—-1 (T < 2.83) the
particle eventually could escape from the solar system

T > 3 no encounters (v2 < 0)

T ~ 3 temporary captures are posible (v, ~ 0)

T < 2.83 ejection from the solar system is possible, and also captures of new comets

Three-Body Problem 78/82



new orbit after
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"comet orbit before
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(from Bennet et al.)

This situation theoretically only happen for objects with T < 2.83. But if T" << 2.83 the encounter
velocity U will be enormous and the deflection angle ~v very small, in consequence the final heliocentric

velocity and the orbit will be slightly modified and the capture will not occur.

Three-Body Problem 79/82



T is a good parameter for classification of small bodies.

Three—Body Problem

4

*+

YRy
+

"\ New comets

0

0.

+ Centaurs
A -
+ _ 15 A
" Q'E;-’i
j‘:-"":--: --------
-
+ _,_.-'—"_"J
+ * =T
; + + r'__.,u-’"'.;. o
"-l' 'H‘_h‘__.-—-"‘ iE.
- Halley— :
:# alley-type 3
E A comets 2z
~u
+ + -g
+ 1P/Halley 2
.
+

|
aj/a

(from Bertotti et al. 2003)

. AP
+ 2P/Encke
I —
JEC =TT
—————————————— 'F ——-‘—’—‘_—-—-"—-———-———-—-—..—

1.5 2

| Asteroids

80,82



The extreme heliocentric velocity 1+ U can only be reached if the adequate deflection

angle v is provided so that [7//‘7}9 The deflection angle cannot have an arbitrary value
and is defined by ¢ and U:

tand —
an— = ——
2  oU?

Deflection angle y for encounters with Earth
- . 10Ry

il
1Ry

0.001 | NN N N e {Ry/10

impact parameter ¢ (AU)

0.0001 |

~Ryy/100

\—»\ T N Reartn
1
encounter velocity U (Earth’s wvelocity = 1)
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Three-Body Problem
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Appendix

Appendix
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Appendix 1: Jacobi’s integral

Demonstration:

The velocity in the inertial frame V and the one in the rotating frame 7 are related by

—

V=r+dAT
The inertial acceleration is @ = —VV where

V()=—-(1—-m)/ri —m/ry

is the gravitational potential generated by the two masses.

The rotating system rotates with & = Z then the relationship between inertial
acceleration @ and the acceleration relative to the rotating system 7 is

G=TF+25ANF+2N(EAF)
but
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being

then

nuﬂﬂph/by;?

then

Integrating

Appendix

p=(z,y,0)

85,82



or

vi =2 +9y* -2V (¥) - C

then, the particle's velocity in the rotating frame becomes

2(1—m)+2_m_0

1 ()

v =22 42 +
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Appendix 2: Tisserand

The particle has some orbital elements (a,e,7) and we will make to appear them in
Jacobi's integral. We need to express position and velocity in the rotating frame (7, ¥) as
function of position and velocity V' in the inertial frame.

We have

squaring

V2 =V2-2V .- (3Ap)+ p?
rearranging

2 =V2-22.(FAV)+ p?

02:‘72—22-(77/\V)+x2—|—y2
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V222 (FAV) =0 —2? —y* = ( m)_|_ T _c
1 T2

(in a numerical integration it is easier to calculate C' using the inertial frame than the
rotating one)

According to the two body problem baricenter-particle:

Vi=2/r—1/a
and . .
5 (FAV)=2%-h=+/a(l —e2)cosi
then
2 1 C2(1-m) 2m
Z_Z_9 1 — e2 = —C
pls Va(l —e2)cosi - +r2

The orbital elements (a, e, 7) are referred to the baricenter of the system Star—+planet
and the inclination is measured with respect to the orbital plane Zi of the planet. In the
case of the solar system m < 1072 so it is possible to assume that (a, e, i) are heliocentric.
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If the particle is not very close to the Sun we have r ~ 7 then

1 1 1
~ 1+ 2y/a(1 = e2) cosi = 2 [———} C
a+ Va(l —e2)cosi = 2m A +

If the particle is far from the Sun and from the planet and taking into account that
m < 1073 we obtain

1
C~-+2ya(l—e2)cosi=T
a

For elliptic orbits it is possible to express T'(q,Q,i) where g, are perihelion and
aphelion:

2 .
T = m+2\/2qQ/(q+Q)cosz
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Appendix 3: The loss cone

The final heliocentric velocity is a vectorial sum:

or

V2 =14+ U?+2U cos®

being 6 the angle between Vj, and U’. If U > /2 — 1 there exists some 0., so that for

0 < 0 the corresponding V is greater than the ejection velocity. This situation occurs
for

1 — U?

O =
COS 577

If we can assume that U’ is randomized (deflection ~ is so great that 6 can get all
values from 0 to m) then the probability of ejection per encounter is equal to the

probability P(0 < 6,) and this is equal to the solid angle subtended by 6., over 47 which
is equal to
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1 242U -1
POO:P(QSHOO):i(l—COSQOO):U +4UU

(U >+V2—1,~v>90°)

Conversely, a comet in an hyperbolic heliocentric orbit has a probability of being
captured after an encounter and is equal to 1 — P,,. These results are only valid for
encounters satisfying the conditions (U > /2 — 1,7 > 90°). These are very strong
conditions, for example, a particle encountering the Earth never satisfies them. The P
should be weighted with the probability P(y > 90°) which is very low. Weidenschilling
(1975) recalculate this issue obtaining more realistic values for the ejection probability.
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Appendix 4: Geometry of encounters

The velocity of encounter U form an angle 6 with the planet’s heliocentric velocity
(V, = ) and is rotated an azimuthal angle ¢ around g. Then:

U, = Usinfsin ¢
U, = Ucos?t
U, =Usin6cos ¢

Assuming the asteroid is encountering the planet: » = 1 and V2 =2 —1/a. The
"angular momentum” is

Va(l —e?) =rV;
where V; is the transverse velocity. In consequence the radial velocity evaluated at » =1
IS

VT2:V2—‘/752:2—1/CL—0,(1—62)

The encounter with the planet occurs at the line of the nodes of the asteroid’s orbit then:
Vy = Vicosi
V, = Visint
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Va: — Vr
Then the relative velocity

—

U=V -V,=V,V,—1,V.)

has components

Uy, =++/2—1/a—a(l — €2)

minus sign is for encounters at pre perihelion passage (7 < 0)

U, =+/a(l —e?)cosi — 1

U, =+/a(l —e2?)sini

minus sign is for encounters at the descending node of the asteroid’s orbit (2 < 0)
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Conversely

1
- 1-U%-2U,

a

e = \/U4 +AU2 + U2(1 — U2 — 2U,) + 4U2U,

. U,
1 = arctan
1+ U,
or also
Lo U?
sin®i = z
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If we define the heliocentric "energy” of the particle as x = 1/a then we have

r=1/a=(1-U?-2U cos?)

and the variation in the energy due to the encounter is

Ax=1/a" —1/a = 2U(cos 6 — cos ')
Maximum variations in energy are:

Az =2U(1 — cosvy(o,U))
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