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Forces

Generated by

• gravity (Newtonian and relativistic) due to Sun, planets, satellites, asteroids.

Model: N point masses + perturbations due to oblateness.

• solar radiation

• medium: solar wind, gas drag.

• magnetic fields: Lorentz forces.

• collisions!
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In the space of orbital elements the asteroid population shows several concentrations: they are produced

by several fragments generated after a catastrophic collision. All them have very similar orbital elements

and constitute a FAMILY.

ECCENTRICITY versus INCLINATION
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Solar radiation generates several dynamical effects:

• radiation pressure (µm): in the direction of the radiation

• Poynting-Robertson drag (cm): (Doppler) opposite to velocity generates migration to the Sun

• Yarkovsky effect (from m to km): (thermal inertia) depending on rotation generates migration to

or from the Sun

• sublimation in comets (ask to some experts here in this room....)
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(taken from Broz et al. 2005)

After a collision a family is generated: the smaller fragments (higher magnitude) are
the most affected by Yarkovsky (so, the most dispersed). This effect can help us in the
determination of the age of the family.
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For most of the solar system’s bodies we can follow the scheme:

total Force model
=

point mass solar Newtonian gravity
+

several small perturbations
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An isolated body
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The field generated by the Sun

Consider a spherical Sun with density ρ(r). Consider the origin at the Sun’s center
and a particle located at ~r:

~̈r = −GM�
~r

r3
= −∇V

V = −GM�
r

”potential” (the ”energy” is conserved)

This second order equation admits the following integrals:

constant ”angular momentum” ~r ∧ ~̇r = ~h (motion is planar)

constant ”energy” E =
v2

2
− GM�

r

In polar (r, f) coordinates the trajectory satisfies:

r(f) =
a(1− e2)
1 + e cos f
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which is a conic with semimajor axis a and eccentricity e (first law of Kepler). Defining
µ = GM� we can show that

E = − µ
2a

and
h2 = µa(1− e2)

E 1/a conic e
- + ellipse 0 ≤ e ≤ 1
+ - hyperbola e ≥ 1
0 0 parabola 1

A very useful formula deduced from equation of energy is:

v2 = µ

(
2
r
− 1
a

)

from which we obtain two very important velocities: the circular (r ≡ a) velocity

v2
c = µ

(
2

r = a
− 1
a

)
=⇒ vc =

√
µ

r
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and the escape (a =∞) velocity

v2
e = µ

(
2
r
− 1
∞

)
=⇒ ve =

√
2vc

A particle located at a distance r from the Sun will have an hyperbolic orbit if its
velocity verifies v >

√
2vc, no matter the direction is.

Another important velocity is the velocity at infinity (r = ∞), the one that the
particle has when the term 2µ/r can be neglected in front of v2

v2
∞ = µ

(
2
∞
− 1
a

)
= −µ

a

v∞ does not exist for ellipses and v∞ = 0 for parabolas.
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Semimajor axis is determined by the modulus of r and v, but the eccentricity is defined
by

µa(1− e2) = h2 = |~r ∧ ~v|2

so it depends also on the angle between ~r and ~v
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Second and third laws of Kepler

By definition

h = |~r ∧ ~v| = r · rdf
dt

= 2
dA

dt
= constant

then the areolar velocity is constant (second law of Kepler). In the particular case of
an ellipse:

h =
√
µa(1− e2) = 2

area ellipse

orbital period
= 2

πab

P

operating, the mean angular velocity called mean motion is:

n =
2π
P

=
√
µ

a3

which is the third law given by Kepler. The orbital period P only depends on the
semimajor axis.

An artificial satellite orbiting the Earth at a = 42160kms has an orbital period exactly
equal to the rotation period of the Earth and is called an ”geosynchronous satellite”.
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Orbital elements

The second order differential equation

~̈r = −µ ~r
r3

has 6 independent integrals of motion (a, e, i,$,Ω, T ) determined by the initial conditions
(xo, yo, zo, ẋo, ẏo, żo). These integrals of motion are called orbital elements:

• a and e define the shape

• i, $ and Ω define the spatial position of the orbit

• T defines the instant of the passage by the pericenter

and they are constant.
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A non spherical body

If the body is not spherical

~̈r = −µ ~r
r3

+∇R(~r, t)

where R is called DISTURBING FUNCTION. Considering the same initial ~r and ~v the
resulting motion is a perturbed conic, that means, varying with time.
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There is an ”orbital evolution” given by (a(t), e(t), i(t), $(t),Ω(t), T (t)). For a given
EPOCH to (for example now, JD2454305.25) we have an instantaneous ”osculating” orbit
given by the set (a(to), e(to), i(to), $(to),Ω(to), T (to)).
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In general, the perturbed orbit is not planar.
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Two–Body Problem
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The bodies accelerate each other

(from Fitzpatrick)
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Sun + Planet

The planet m accelerates the Sun, then it is not more inertial and we cannot apply
Newtonian laws directly with origin in the Sun. We can take the baricenter as an inertial
origin and we can write the equations of motion related to this frame:

~FSun = M�~̈rSun = +GM�m
~r

r3

~Fpla = m~̈rpla = −GM�m
~r

r3

being ~r = ~rpla − ~rSun the position vector of the planet relative to the Sun.
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Operating:

~̈r = ~̈rpla − ~̈rSun =
~Fpla
m
−
~FSun
M�

= −G(M� +m)
~r

r3

=⇒ ~̈r + µ
~r

r3
= 0

being the same equation of the conic but now with µ = G(M� +m).

The motion of a planet of mass m around the Sun is equal to the motion of a
massless particle around a star with mass (M� +m).
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The shape of the orbit

  

Position and Velocity (6)

Properties of the 
ellipse

(from Carl Murray)

pericentre: r(f = 0) = a(1− e) = q, apocentre: r(f = π) = a(1 + e) = Q
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Orbit in space

  

The Orbit in Space (1)
When we consider motion in three dimensional space we 
have to introduce additional angles to define the orbit.

W Longitude of 
ascending node

I Inclination

w Argument of 
pericentre

(from Carl Murray)

The elements Ω, ω, i need some reference plane and some reference direction, for example,
the ecliptic and Aries corresponding to 2000.0.
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N–Body Problem
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General N body problem

We start with N second order differential equations in vectorial form:

~̈ri = −G
N∑
j=1

mj
~rj − ~ri
r3ji

That system can be transformed to a system of 2N first order differential equations.
According to a theorem (from differential equations) we need 2N × 3 integrals of motion
in order to resolve the system. Unfortunately there exist only 10 integrals, then for N > 2
the N body problem has not analytical solution. We can instead obtain the numerical
solutions ~ri(t) which are unique.
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10 integrals of motion

An isolated system verifies constant momentum
−→
P

−→
P =

N∑
j=1

mj
−→v j = −→v bar

N∑
j=1

mj = constant

so its barycenter moves with constant velocity, it is inertial and we can take it as the
origin of coordinates. Then:

−→v bar = (linear comb. of ~vj) = 0 (3 constants of motion)

and also

−→r bar = (linear comb. of ~rj) = 0 (3 constants of motion)

Angular momentum is also constant:

−→
L =

N∑
j=1

mj
−→r j ×−→v j = constant (3 more constants)
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The fact that
−→
L is constant means there is a preferred spatial direction. The plane

perpendicular to this direction is called the fundamental or invariable plane.

Total energy:

E = T + Ep =
1
2

N∑
j=1

mjv
2
j −G

N∑
j=1

j−1∑
k=1

mkmj

rkj
= constant (1 more constant)

These 10 integrals are not enough to resolve analytically the system of N vectorial second
order differential equations

~̈ri = −G
N∑
j=1

mj
~rj − ~ri
r3ji

but we can solve it numerically using appropriate algorithms called ”numerical integrators”:
MERCURY, SWIFT, HNBody, OrbFit, EVORB, and many others.

For each body we obtain

x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)
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Time evolution of the Solar System’s energy
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100 years of motion of the Sun around the baricenter
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Extraterrestrial civilizations could detect this motion (don’t panic).
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(from ... somewhere...)
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Planetary theory
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Planetary problem: N planets + Sun

The planetary problem can be considered as an (N+1) body problem with a dominating
mass (the Sun). We can transform the (N+1) vectorial equations relative to the baricenter
to a sistem of N heliocentric equations:

~̈ri = −µi
~ri
r3i

+G

N∑
j 6=i

mj

(
~rj − ~ri
r3ji

− ~rj
r3j

)

µi = G(M� +mi)

heliocentric acceleration = two-body + direct pert. by mj + indirect pert. by mj

planetary motion = two-body problem + small perturbations

Instead of solving the rectangular heliocentric quick varying coordinates (timescale of
days)

x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)
we can solve the heliocentric slow varying parameters (timescale of centuries)

a(t), e(t), i(t), $(t),Ω(t), T (t)
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Perturbation Theory

For a given planet it is possible to write the equation of motion in the form

~̈r + µ
~r

r3
= ∇R(~r1, . . . , ~rN)

where R is the Disturbing Function. It is possible to transform this equation in another
very different form due to Lagrange (+ Euler + Laplace):

da

dt
=

2
na

∂R

∂λ
de

dt
= · · ·

di

dt
= · · ·

d$

dt
= · · ·

dΩ
dt

=
1

na2
√

1− e2 sin i
∂R

∂i

dT

dt
= · · ·
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6 equations for each planet where R is a very unfriendly function

R = R(a1, ..., aN , e1, ..., eN , i1, ..., iN , $1, ..., $N ,Ω1, ...,ΩN , λ1, ..., λN)

In general it is a function depending on 6×N variables and to obtain that expression for
R it was not a trivial issue:

R =
∑

F (a, e, i) cos[S(λ,$,Ω)]

where functions S(λ,$,Ω) are linear combinations of λ,$,Ω. The λ are quick varying
angles, on the contrary $,Ω are slow varying angles. Then:

R = RSP (a, e, i,$,Ω, λ) +RLP (a, e, i,$,Ω)

The short period terms usually cancellate (please theoreticians close your eyes) and we
can assume

R ' RLP (a, e, i,$,Ω)

this part of the disturbing function is the responsible for the long term secular evolution
of the system.
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Taking R ' RLP the first of the Lagrange’s planetary equations becomes:

da

dt
' 2
na

∂RLP
∂λ

= 0

then the semimajor axis of the planets do not change with time...

the planetary system do not shrinks nor expands!!!

That was a very impacting result of the XVIII century due to Euler, Lagrange and
Laplace. It is also possible to show that e and i do not grow systematically but oscillate.
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the band

  

Pioneers of the Three-Body Problem

Euler Laplace Lagrange Jacobi

LeVerrier Hamilton Birkoff Poincaré
(from Carl Murray)
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Venus, Earth and Mars in the next 5 Myrs: a(t)
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Results from the numerical integration of the exact newtonian equation of motion of
the Solar System. Congratulations to Euler-Laplace-Lagrange!!!
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Venus, Earth and Mars in the next 5 Myrs: e(t)
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Fundamental Frequencies and Chaos

If planetary orbits are not very close and with small eccentricity it is possible to show
that the system will oscillate with 3N -almost well defined- Fundamental Frequencies:

• N high frequencies are associated with the orbital periods (years) and generate small
oscillations in a

• N low frequencies are associated with the ”precession” of the perihelia and generate
oscillations in e (105 − 106 years)

• N low frequencies are associated with the motion of the orbital nodes and generate
oscillations in i (105 − 106 years)

The first set of N frequencies is not related to relevant variations in the orbital elements
so usually are ignored. The last two sets of N frequencies are known as the fundamental
frequencies of the Solar System.
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If these frequencies are well defined (that means, constant) the system is quasi-regular
and stable. If these frequencies are not well defined (varying with time) the system is
chaotic and the chaotic behavior will be appreciable after some timescale.

Our Solar System has not fixed fundamental frequencies then ..... is chaotic.
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So...

the planetary system is stable and chaotic ...

• According to the perturbation theory (semimajor axes are constant) the system is
STABLE.

• According to the N-body problem the future of the system is DETERMINED (only
one solution exists) but CHAOTIC (hard to predict).

• According to modern numerical integrations the planetary system is under STABLE
CHAOS: we can predict reasonably well the orbital evolution but not the exact
position of the planets in their orbits.

Planetary theory 41/82



Numerical integrations versus theory

Nowadays theoretical analysis is used not just to obtain analytical solutions but to
provide theoretical explanations to the very precise solutions obtained with the numerical
integrators.

Everybody can obtain a precise numerical solution of a dynamical problem but only
with the understanding of the theory we can explain the results obtained.
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Resonances
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Resonances

They happen when a simple commensurability exists between some fundamental
frequencies of the system (orbital periods, rotational periods, perihelion motion, node
motion)

• orbit-orbit (mean motion resonances)

• asteroids with Jupiter (3:2, 2:1, 1:1)

• TNOs with Neptune

• Pluto-Neptune (2:3)

• quasi resonance Jupiter-Saturn (5:2) and Uranus-Neptune (2:1)

• galilean satellites of Jupiter, Uranus satellites, rings

• spacecrafts

• spin-orbit

• Earth-Moon (1:1)

• Sun-Mercury (1:2)

• Pluto-Charon (1:1)

• secular resonances: orbital plane involved ($,Ω). Fatal destiny: collision with the
Sun.
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Is the resonant motion a common dynamical state?

For example, mean motion resonances with a given planet are located at

n ·N1 ' np ·N2 or a ' ap
(
N1

N2

)2/3

with N1, N2 arbitrary integers. Then, resonances occur at very precise positions. Is it
probable that an object be located at the exact position of the resonance?

Yes

Why?

At least three reasons:

• there are several, several resonances

• resonances have some strength and stickiness, they can ”attract” trajectories to
them

• there are mechanisms (like Yarkovsky, tides, gas drag) that drive the objects to the
resonances and there is a chance to be captured by them
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Resonances everywhere

Strengths for low eccentricity orbits.
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Resonances everywhere

Strengths for high eccentricity orbits.
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Resonance capture due to Yarkovsky

(Bottke et al. 2000)

Then, high eccentricity orbits (and sometimes high inclination orbits) are usually in
resonance. A notable example is the orbital evolution of the population of NEOs, comets,
TNOs and SDOs.

The resonant motion only appears after several orbital revolutions, it is not an
instantaneous effect.
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The Main Belt of asteroids is shaped by Jupiter
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Fig. 1. Locations of the mean motion resonances in the main belt of asteroids with their associated strengths calculated following Gallardo (2006) assuming e = 0.3,
i = 10◦ and ω = 60◦ . Some strong resonances are labeled with the indication of the planet associated. Superimposed is showed an histogram of semimajor axes of
the known asteroid population taken from ASTORB database with osculating epoch JD 2454200.5 and using bins of 0.001 AU. Gaps due to resonances with Jupiter
are evident and also the excess at a � 2.419 AU where the conspicuous exterior resonance 1:2 with Mars is located. The excess covers several bins being the most
populated the one at a = 2.419 AU with an excess of around 150 asteroids with respect to the background (see the zoom at upper right corner).

Fig. 2. Time evolution of the number of known asteroids with libration amplitude (σmax − σmin) less than 180◦ (continuous line) and the evolution of Mars’
eccentricity (dashed line). The number of librating asteroids does not diminish with time, on the contrary it is strongly linked to the oscillations of the eccentricity
of Mars.

oscillating around the libration center located at σ < 180◦ and 9% are oscil-
lating around the libration center located at σ > 180◦; (ii) 62% are switching
between both libration centers or in horseshoe trajectories or librating around
σ = 180◦ with libration amplitude less than 350◦; (iii) 17% are alternating be-
tween horseshoe trajectories and circulation.

We numerically integrated the same planetary model and this population
of about 1000 resonant asteroids for 1 million years and found that in this

time-scale the resonant population is stable. Changes between libration cen-
ters and temporary circulations are very common but the number of asteroids
experiencing librations is not diminishing but oscillating in phase with the time
evolution of Mars’ eccentricity (Fig. 2). This behavior is due to the forced mode
(Ferraz-Mello, 1988; Gallardo and Ferraz-Mello, 1995) that is a component of
the resonant motion due to Mars’ eccentricity and proportional to it that pro-
duces a periodic modulation of the libration trajectory.

the distribution of asteroids is strongly linked to mean motion resonances
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Three–Body Problem
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Sphere of action and Hill’s radius, RH

Consider the acceleration due to the Sun at a distance r:

α = GM�/r
2

A small departure dr generates a variation (a tide):

dα = 2GM�
1
r3
dr
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Now consider a satellite orbiting a planet with mass m at a distance ∆.

Taking dr = ∆ the difference in the acceleration between planet located at a mean
heliocentric distance a and the satellite is

dα = 2GM�
1
a3

∆

The aceleration due to the planet is

αp = Gm/∆2

and when both are comparable (dα = αp) the satellite loses its planetocentric
regime and that occurs for a limit value ∆L:
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∆L ∼ a
( m

2M�

)1/3

Outside this sphere a planet cannot retain a satellite. A more standard parameter is
the Hill’s radius (derived from the CR3BP):

RH = a
( m

3M�

)1/3

It follows that
solar tide

planetary acceleration
=
dα

αp
∼
( ∆
RH

)3

At a distance ∆ < RH/4 for example, the tides due to Sun are negligible. When a
spacecraft, comet or asteroid is having a close encounter with a planet we can neglect
the solar perturbation and consider only the planetocentric orbit of the body (usually
an hyperbola) as a first reasonable approximation.
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Hyperbolic encounters and impact parameter, σ
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Planetocentric orbit

Once an asteroid is well inside the Hill’s radius of a planet (for example when
r ∼ RH/4) we can neglect the perturbations by the Sun and consider only the hyperbolic
planetocentric trajectory of the asteroid. The planetocentric velocity is

v = |~Vast − ~Vpla|

and taking µ = Gm we can write:

v2 = µ

(
2
r
− 1
a

)
In general

v2(r ∼ RH/4) ' v2(r =∞) = −µ
a

Hill’s radius is a small distance from an heliocentric point of view but a large distance
when observed from a planetocentric point of view.
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Then when r ∼ RH/4 is reasonable to assume

• two-body problem asteroid-planet

• the asteroid is ”at infinity” with respect to the planet

The semimajor axis of the planetocentric hyperbola is

a = − µ

v2
∞

and the angular momentum is

h = σ · v∞ = q · vq
being σ the impact parameter which can be related to the pericentric distance q of
the trajectory:

σ = q
√

1− 2a/q = q

√
1 +

2µ
v2
∞q
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A collision with the planet occurs when q ≤ Rplanet.
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The angular deflection of the planetocentric velocity ~v is γ:

sin
γ

2
= (1 + σv2

∞/µ)−1

it can be deduced from the equation of the conic when the true anomaly tends to infinity

cos f∞ = −1/e = − sin(γ/2)
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The new heliocentric orbit

After a close approach the planetocentric velocity of the asteroid rotates an angle γ
and the new heliocentric velocity will be different

−→
V ′ast =

−→
V pla +

−→
v′

consequently the heliocentric orbit will be different

  

The Tisserand Relation (4)
Therefore the comet’s elements before and after the 
encounter with Jupiter are related by:

Numerical 
example:

(from Murray and Dermott)
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CR3BP: Jacobi’s constant C

Consider a planet revolving a star with circular orbit of radius a. We redefine units of
length, mass and time such that:

a = 1 (my new unit of length)

1−m: mass of star

m: mass planet

G = 1
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the mean motion is n2 = G(1−m+m)/a3 = 1 rads per unith of time, but

n = 1 =
2π
P

then using these units the orbital period of the planet is P = 2π. The circular velocity of
the planet around the star is Vp = na = 1.

We define the system (x̂, ŷ, ẑ) which rotates with the planet around the baricenter of
the system with angular velocity

~ω = nẑ = 1ẑ

Consider a particle located in ~r = (x, y, z). We can demonstrate (see Appendix) the
Jacobi’s integral of motion of the particle where v is the particle’s velocity in the rotating
frame:

C = x2 + y2 +
2(1−m)

r1
+

2m
r2
− v2

C is a constant in the CR3BP. If planet’s eccentricity is different from zero C will oscillate
around a mean value.
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Zero velocity curves

Motion must verify

v2 = x2 + y2 +
2(1−m)

r1
+

2m
r2
− C ≥ 0

then, the surfaces

x2 + y2 +
2(1−m)

r1
+

2m
r2
− C = 0

define regions where the motion is confined. These are the zero velocity surfaces. They
cannot be crossed. We do not have an analytical solution to the problem but we can
determine regions where the motion is allowed.

Given some initial conditions, the constant C is defined and the zero velocity surfaces
are determined. We can explore these surfaces intersecting with the orbital plane of the
planet (z = 0).

We start with a particle having high C, that means r1 ∼ 0, r2 ∼ 0 or x2 + y2 →∞.
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Surface (v2 = 0) ∩ (z = 0) plane. In red, the not allowed region (v2 < 0).
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for a lower C it appears the first (unstable) equilibrium point
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then, the second (unstable) equilibrium point
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For some C values nice temporary captures can occur
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...and the third (sorry, also unstable) equilibrium point
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Finally, the stable ones appear when the zero velocity curves collapse into points
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Equilibrium points

They are obtained looking for

ẍ = 0

ÿ = 0

z̈ = 0

v = 0

There are only five and all them in the plane z = 0.
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It can be showed that L1, L2, L3, L4, L5 are the only equilibrium points and only L4, L5

are stable. The distance from L1 and L2 to the planet is the Hill’s radius RH: the
farthest distance allowed for a permanent satellite.
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Quasi satellites
QUASI SATELLITES IN THE OUTER SOLAR SYSTEM 1979

FIG. 1.ÈNominal shapes of three QS orbits, seen in a frame that coro-
tates with their planet. These orbits have nominal eccentricities of 0.1, 0.2,
and 0.5. The shaded circle is the size of JupiterÏs Hill sphere, shown for
comparison.

together. The nine sets were given inclinations relative to
their planetÏs orbital plane, with di†erences *i1 of 0¡, ^5¡,
^10¡, ^20¡, and ^30¡. The ensemble of these 1800 par-
ticles will be called the ““ broad ÏÏ set. The matching positive
and negative inclination increments should produce similar,
though not identical, results. These arrangements do not
constitute mirror conÐgurations, as the giant planets do not
all lie in exactly the same plane. However, we do expect the
results to be similar for relative inclinations of the same
absolute magnitude, allowing an additional, albeit crude,
check on our results.

Based on the simulations described above, further inte-
grations (the ““ narrow ÏÏ set) were performed at lower *i and
over a smaller range of eccentricities. Nine sets of 50 par-
ticles, 1800 in total, were again simulated at inclinations of
[4¡ to ]4¡, in 1¡ increments relative to the associated
planetÏs orbital plane. These simulations provide a more
detailed look at the most stable regions of the phase space.

Each simulation in the broad set was performed with two
di†erent time steps. The Ðrst time step *t was 0.1, 0.25, 0.5,
and 1.0 yr for the QSs of Jupiter through Neptune, respec-
tively, resulting in 120È140 steps per orbital period of the
associated planet. The second set was a factor of 5 smaller
and was performed as a check on the earlier integrations.
The results were qualitatively the same in both cases, so
only the results with the larger step size are presented here,

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
1 Negative inclinations are not properly deÐned for the standard

Keplerian elements, where the inclination is restricted to the range
i ½ [0¡, 180¡]. In the event of a particle being assigned a negative inclina-
tion through the application of the increments mentioned above (i.e., if

where the subscript p indicates the planetÏs ecliptic elements),i
p
] *i \ 0,

the following algorithm is used :

i\ o i
p
] *i o , )\ )

p
] 180¡ , u\ u

p
] 180¡ .

This procedure avoids confusion as to the orbital geometries : all particles
are initially on prograde heliocentric orbits.

unless speciÐcally mentioned otherwise. The simulations in
the narrow set were performed with the larger step size only.

We note that the use of larger step sizes for the more
distant planets results in a decreased accuracy of the inte-
gration of the inner giant planets, which could potentially
degrade the accuracy of the simulations of the outer giant
planet QSs. However, the time steps chosen allow the neces-
sary accuracy to be maintained. For the most extreme case,
when simulating hypothetical QSs of Neptune, a time step
of 1.0 or 0.2 yr is used, resulting in approximately 12 or 60
steps per orbit for Jupiter. Given the similarity of the results
in these two cases, and the fact that QSs interact most
strongly with their associated planet, we conclude that this
choice of step size is reasonable.

The difficulties involved in performing such long-term
integrations are well known, and we do not claim here to
have overcome them. The Lyapunov times of QSs are 104
to 105 yr for the longest Uranus and Neptune survivors,
and thus the strict validity of simulations on longer time-
scales is questionable. However, we make the conventional
argument that the speciÐc details of the evolution are sec-
ondary since we are not interested in any speciÐc QS, but
only the statistics of the QSs as an ensemble.

Particles passing within the Hill sphere RH \ [M
p
/

(3 where and are the mass and semimajorM
_
)]1@3a

p
, M

p
a
paxis of the planet, respectively, are removed from the simu-

lations, as our algorithm is not designed to handle these
close encounters to high accuracy. This criterion also pre-
vents confusion (on the basis of their low relative
longitudes) of true captured satellites with QSs. Though
motivated by practical concerns, this approach is not
without some physical justiÐcation : one expects particles
su†ering such close approaches to undergo relatively large
changes in their orbital elements, removing themselves from
the QS sample. Indeed, our simulations conÐrm this to
some degree : QSs are found to be unstable in the region
immediately outside the Hill sphere.

To monitor close approaches, our simulations must reli-
ably detect close encounters between the test particles and
the planet. This is done simply by checking at each time step
whether any particle is within of any planet. This pro-RHcedure is reliable as long as the distance traveled by a test
particle in one time step is much less than otherwise theRH,
close encounter might be missed. We have veriÐed that the
time steps *t are small enough (even for the largest step size)
that the probability of a close encounter being missed by
the particleÏs ““ stepping over ÏÏ the Hill sphere without being
detected is of order 10~2, and thus we are conÐdent that
close encounters between QSs and their planets are detected
properly.

Pains are taken to determine which particles in our simu-
lations remain on quasi-satellite orbits and which wander
o† to nearby regions of phase space. A criterion based solely
on the value of the semimajor axis is incomplete because
particles may escape into other types of 1 :1 mean motion
resonances, such as tadpole or horseshoe orbits. Here a
particle is deemed to have left the QS state if the longitude
di†erence j between it and its planet exceeds 120¡, since an
object would require a heliocentric eD 0.9 to be on such an
elongated QS orbit. However, as this procedure may fail to
detect particles orbiting near the L4 and L5 points, we also
maintain a record of the particlesÏ minimum and maximum
relative longitudes. These values are checked on timescales
of about one heliocentric orbital period or less and allow us

(from Wiegert et al. 2000)
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Quasi satellite of Venus

2002VE68
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Quasi satellite of Earth
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Tisserand parameter, T

It is possible to write Jacobi’s integral C(v, x, y, z) as a function of the osculating
heliocentric orbital elements of the particle (see Appendix):

C ' 1
a

+ 2
√
a(1− e2) cos i = T

expression which is valid if the particle is far from the Sun and from the planet and
taking into account that m < 10−3. T is known as the Tisserand parameter. In the
CR3BP, C is constant and T presents some departures only if the orbital elements are
determined when the conditions above are not satisfied (near the Sun or the planet). T
should be considered as a simple and approximate form of calculating C.
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The Tisserand Relation (4)
Therefore the comet’s elements before and after the 
encounter with Jupiter are related by:

Numerical 
example:

(from Murray and Dermott)

After a close encounter with a planet the orbital elements (a, e, i) will change but C and
T are conserved.
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The encounter velocity, U

Suppose the particle is near the planet (then r1 ' 1 and x2 + y2 ' 1) but far enough
that we can neglect its gravitational attraction (say r ∼ RH, where m/r2 ' 0) so the
particle is ”at infinity”. Then from Jacobi’s integral:

v2 = x2 + y2 +
2(1−m)

r1
+

2m
r2
− C

v2
∞ ' 1 + 2 + 0− T

then, under the hypothesis above, the planetocentric velocity ”at infinity” of the
particle is

v∞ '
√

3− T = U

U is the encounter velocity with the planet before the gravitational attraction is felt
by the particle (that means ”at infinity”).

U and T are constant
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The orbital elements (a, e, i) can evolve but T and U remain constant, only the

orientation of ~U is modified (U rotates γ after the encounter).

It follows that when T > 3 encounters cannot exist.

When T < 3 they could exist but they are not guaranteed. For example: a = 2, e =
0, i = 90o implies T = 0.5 but the particle never approaches the planet.

If U ∼ 0 (T ∼ 3) the planetocentric orbit is quasi-parabolic and a temporary capture
by the planet is possible because a slight perturbation can transform the parabola into an
ellipse. Then, objects with T ∼ 3 can experience temporary captures by the planet.
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The greatest heliocentric velocity the particle can get after the encounter is (assuming
~U// ~Vp):

Vp + U = 1 + U

The escape velocity from the system is
√

2Vp =
√

2, so if U ≥
√

2 − 1 (T < 2.83) the
particle eventually could escape from the solar system and conversely if U <

√
2− 1 the

particle will never left the solar system by this mechanism. Note that only prograde orbits
have U < 1.

T > 3 no encounters (v2
∞ < 0)

T ∼ 3 temporary captures are posible (v2
∞ ∼ 0)

T < 2.83 ejection from the solar system is possible, and also captures of new comets
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(from Bennet et al.)

This situation theoretically only happen for objects with T < 2.83. But if T << 2.83 the encounter

velocity U will be enormous and the deflection angle γ very small, in consequence the final heliocentric

velocity and the orbit will be slightly modified and the capture will not occur.
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T is a good parameter for classification of small bodies.

(from Bertotti et al. 2003)
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The extreme heliocentric velocity 1 +U can only be reached if the adequate deflection
angle γ is provided so that ~U// ~Vp. The deflection angle cannot have an arbitrary value
and is defined by σ and U :

tan
γ

2
=

1
σU2
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see Appendix for details
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Appendix
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Appendix 1: Jacobi’s integral

Demonstration:

The velocity in the inertial frame ~V and the one in the rotating frame ~̇r are related by

~V = ~̇r + ~ω ∧ ~r

The inertial acceleration is ~α = −∇V where

V(~r) = −(1−m)/r1 −m/r2

is the gravitational potential generated by the two masses.

The rotating system rotates with ~ω = ẑ then the relationship between inertial
acceleration ~α and the acceleration relative to the rotating system ~̈r is

~α = ~̈r + 2ẑ ∧ ~̇r + ẑ ∧ (ẑ ∧ ~r)

but
~r = zẑ + ~ρ
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being
~ρ = (x, y, 0)

then

~α = ~̈r + 2ẑ ∧ ~̇r − ~ρ

multiply by ~̇r:

~α · ~̇r =
[
~̈r · ~̇r − ~ρ · ~̇ρ

]
then

~α · d~r = −∇Vd~r =
[
~̈r · ~̇r − ~ρ · ~̇ρ

]
dt

integrating

−2V(~r) = ~̇r
2
− (x2 + y2) + C
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or

v2 = x2 + y2 − 2V(~r)− C

then, the particle’s velocity in the rotating frame becomes

v2 = x2 + y2 +
2(1−m)

r1
+

2m
r2
− C
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Appendix 2: Tisserand

The particle has some orbital elements (a, e, i) and we will make to appear them in
Jacobi’s integral. We need to express position and velocity in the rotating frame (~r,~v) as

function of position and velocity ~V in the inertial frame.

We have

~V = ~̇r + ~ω ∧ ~r = ~̇r + ẑ ∧ ~ρ

Then

~̇r = ~V − ẑ ∧ ~ρ

squaring

v2 = ~V 2 − 2~V · (ẑ ∧ ~ρ) + ρ2

rearranging

v2 = ~V 2 − 2ẑ · (~ρ ∧ ~V ) + ρ2

v2 = ~V 2 − 2ẑ · (~r ∧ ~V ) + x2 + y2
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~V 2 − 2ẑ · (~r ∧ ~V ) = v2 − x2 − y2 =
2(1−m)

r1
+

2m
r2
− C

(in a numerical integration it is easier to calculate C using the inertial frame than the
rotating one)

According to the two body problem baricenter-particle:

V 2 = 2/r − 1/a

and
ẑ · (~r ∧ ~V ) = ẑ · ~h =

√
a(1− e2) cos i

then

2
r
− 1
a
− 2
√
a(1− e2) cos i =

2(1−m)
r1

+
2m
r2
− C

The orbital elements (a, e, i) are referred to the baricenter of the system Star+planet
and the inclination is measured with respect to the orbital plane x̂ŷ of the planet. In the
case of the solar system m < 10−3 so it is possible to assume that (a, e, i) are heliocentric.
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If the particle is not very close to the Sun we have r ' r1 then

1
a

+ 2
√
a(1− e2) cos i = 2m

[ 1
r1
− 1
r2

]
+ C

If the particle is far from the Sun and from the planet and taking into account that
m < 10−3 we obtain

C ' 1
a

+ 2
√
a(1− e2) cos i = T

For elliptic orbits it is possible to express T (q,Q, i) where q,Q are perihelion and
aphelion:

T =
2

q +Q
+ 2
√

2qQ/(q +Q) cos i
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Appendix 3: The loss cone

The final heliocentric velocity is a vectorial sum:

~V = ~Vp + ~U ′

or

V 2 = 1 + U2 + 2U cos θ

being θ the angle between ~Vp and ~U ′. If U >
√

2− 1 there exists some θ∞ so that for
θ ≤ θ∞ the corresponding V is greater than the ejection velocity. This situation occurs
for

cos θ∞ =
1− U2

2U

If we can assume that ~U ′ is randomized (deflection γ is so great that θ can get all
values from 0 to π) then the probability of ejection per encounter is equal to the
probability P (θ ≤ θ∞) and this is equal to the solid angle subtended by θ∞ over 4π which
is equal to
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P∞ = P (θ ≤ θ∞) =
1
2

(1− cos θ∞) =
U2 + 2U − 1

4U
(U >

√
2− 1, γ > 90o)

Conversely, a comet in an hyperbolic heliocentric orbit has a probability of being
captured after an encounter and is equal to 1 − P∞. These results are only valid for
encounters satisfying the conditions (U >

√
2 − 1, γ > 90o). These are very strong

conditions, for example, a particle encountering the Earth never satisfies them. The P∞
should be weighted with the probability P (γ ≥ 90o) which is very low. Weidenschilling
(1975) recalculate this issue obtaining more realistic values for the ejection probability.
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Appendix 4: Geometry of encounters

The velocity of encounter U form an angle θ with the planet’s heliocentric velocity
(~Vp = ŷ) and is rotated an azimuthal angle φ around ŷ. Then:

Ux = U sin θ sinφ

Uy = U cos θ

Uz = U sin θ cosφ

Assuming the asteroid is encountering the planet: r = 1 and V 2 = 2 − 1/a. The
”angular momentum” is √

a(1− e2) = rVt

where Vt is the transverse velocity. In consequence the radial velocity evaluated at r = 1
is

V 2
r = V 2 − V 2

t = 2− 1/a− a(1− e2)

The encounter with the planet occurs at the line of the nodes of the asteroid’s orbit then:

Vy = Vt cos i

Vz = Vt sin i
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Vx = Vr

Then the relative velocity

~U = ~V − ~Vp = (Vx, Vy − 1, Vz)

has components

Ux = ±
√

2− 1/a− a(1− e2)

minus sign is for encounters at pre perihelion passage (ṙ < 0)

Uy =
√
a(1− e2) cos i− 1

Uz = ±
√
a(1− e2) sin i

minus sign is for encounters at the descending node of the asteroid’s orbit (ż < 0)
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Conversely

a =
1

1− U2 − 2Uy

e =
√
U4 + 4U2

y + U2
x(1− U2 − 2Uy) + 4U2Uy

i = arctan
Uz

1 + Uy

or also

sin2 i =
U2
z

U2
z + (1 + Uy)2

Appendix 94/82



If we define the heliocentric ”energy” of the particle as x = 1/a then we have

x = 1/a = (1− U2 − 2U cos θ)

and the variation in the energy due to the encounter is

∆x = 1/a′ − 1/a = 2U(cos θ − cos θ′)

Maximum variations in energy are:

∆x = 2U(1− cos γ(σ, U))
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