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1. SPHERE OF ACTION AND HILL’S RADIUS, RH

Consider the acceleration due to the Sun at a distance r: α = GM�/r
2

A small dr generates: dα = −2GM�
1
r3
dr

Consider a satellite orbiting a planet at a distance ρ. Taking dr = ρ the difference in the acceler-

ation between planet located at a mean heliocentric distance a and the satellite is dα = 2GM�
1
a3
ρ.

The aceleration due to the planet is Gm/ρ2 and when both are comparable the satellite lost its

planetocentric regime and that occurs for a limit value ρL:

ρL = a
( m

2M�

)1/3

Outside this sphere a planet cannot retain a satellite. A more standard parameter is the Hill’s

radius (derived from the R3BP):

RH = a
( m

3M�

)1/3

Then

SolarT ide

P lanetaryAcceleration
∼ 2

3

( ρ

RH

)3

2. HYPERBOLIC ENCOUNTERS AND IMPACT PARAMETER, σ

Once an asteroid is well inside the Hill’s radius (for example when r < RH/4) of a planet we can

neglect the perturbations by the Sun and consider the hyperbolic planetocentric trajectory of the

asteroid. The equation of energy is

1

2
v2 − Gm

r
= −Gm

2a

The planetocentric velocity is v∞ = | ~Va − ~Vp| which can be considered at infinity because the term

Gm/r can be neglected in front of v2/2. This is valid if v2 >> 2Gm/r at a planetocentric distance

where the sun’s attraction can be neglected. For example at r = RH/4 the condition becomes

v(km/s) >> 100(
m

M�
)2/3
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For example, for the Earth we have the condition v >> 0.02km/s which is almost always satisfied

taking into account that the mean velocity of encounter for the Earth with asteroids is 2 to 3 orders

of magnitude greater.

Then when r ∼ RH/4 is reasonable to assume a) the problem is planetocentric and b) the asteroid

is ”at infinity” with respect to the planet.

The semimajor axis of the planetocentric hyperbola is

a = −Gm
v2∞

and the angular momentum is

h = σ · v∞ = q · vq

being σ the impact parameter which can be related to the pericentric distance of the trajectory

q:

σ = q
√

1− 2a/q = q
√

1 + 2Gm
v2∞q

A collision with the planet occurs when q ≤ Rplanet. We can define the σ corresponding to collision

σc = Rp

√
1 +

2Gm

v2
∞Rp

for σ < σc a collision is certain.

The angular deflection of the planetocentric velocity ~v is γ (see figure 1):

tan γ
2

= Gm
σv2∞

or

sin γ
2

= (1 + σv2
∞/Gm)−1

these formulae can be deduced from the conic when the true anomaly tends to infinity: cos f∞ =

−1/e = − sin(γ/2).

Total randomization of ~v is attained if encounters are such that γ ≥ 90o which means σ ≤

Gm/v2
∞. In some cases randomization would be attained only for such σ that a collision with the

planet is inevitable.

(see figure 2)

3. RESTRICTED THREE-BODY PROBLEM, JACOBI’S CONSTANT C
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Consider a planet revolving a star with circular orbit of radius a (see figure 3). We redefine units

of mass, length and time such that:

1−m: mass of star

m: mass planet

the mean motion is n2 = µ/a3

the constant for two body problem is: G(m1 +m2) = µ = k2((1−m) +m) = k2

taking unit of length equal to a and taking unit of time such as to make k = 1 then

n = 1 = 2π
P

then using these units the orbital period of the planet is P = 2π. The linear velocity

of the planet around the star is Vp = na = 1.

We define the system (x̂, ŷ, ẑ) which rotates with the planet around the barycenter of the system

with angular velocity ~ω = nẑ = 1ẑ.

Consider a particle located in ~r = (x, y, z). We can demonstrate the Jacobi’s integral of motion of

the particle where v is the particle’s velocity in the rotating frame:

v2 = x2 + y2 +
2(1−m)

r1

+
2m

r2

− C

being ri the distance to mass i and C is a constant.

Demonstration:

The velocity in the inertial frame ~V and the one in the rotating frame ~̇r are related by

~V = ~̇r + ~ω ∧ ~r

The inertial acceleration is ~α = −∇V where V(~r) = −(1 − m)/r1 − m/r2 is the gravitational

potential generated by the two masses.

The rotating system rotates with ~ω = ẑ then the relationship between inertial acceleration ~α and

the acceleration relative to the rotating system ~̈r is

~α = ~̈r + 2ẑ ∧ ~̇r + ẑ ∧ (ẑ ∧ ~r)

but ~r = zẑ + ~ρ being ~ρ = (x, y, 0)

then

~α = ~̈r + 2ẑ ∧ ~̇r − ~ρ
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multiply by ~̇r:

~α · ~̇r =
[
~̈r · ~̇r − ~ρ · ~̇ρ

]
then

~α · d~r = −∇Vd~r =
[
~̈r · ~̇r − ~ρ · ~̇ρ

]
dt

integrating

−2V(~r) = ~̇r
2 − (x2 + y2) + C

or

v2 = x2 + y2 − 2V(~r)− C

then, the particle’s velocity in the rotating frame becomes

v2 = x2 + y2 +
2(1−m)

r1

+
2m

r2

− C

C is a constant in the R3BP. If planet’s eccentricity is different from zero C will oscillate around a

mean value.

4. TISSERAND PARAMETER, T

The particle has some orbital elements (a, e, i) and we will make to appear them in Jacobi’s integral.

We need to express position and velocity in the rotating frame (~r,~v) as function of position and

velocity ~V in the inertial frame.

We have

~V = ~̇r + ~ω ∧ ~r = ~̇r + ẑ ∧ ~ρ

Then

~̇r = ~V − ẑ ∧ ~ρ

squaring

v2 = ~V 2 − 2~V · (ẑ ∧ ~ρ) + ρ2

rearranging

v2 = ~V 2 − 2ẑ · (~ρ ∧ ~V ) + ρ2
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v2 = ~V 2 − 2ẑ · (~r ∧ ~V ) + x2 + y2

~V 2 − 2ẑ · (~r ∧ ~V ) = v2 − x2 − y2 = 2(1−m)
r1

+ 2m
r2
− C

(in a numerical integration it is easier to calculate C using the inertial frame than the rotating one)

According to the two body problem barycenter-particle:

V 2 = 2/r − 1/a and ẑ · (~r ∧ ~V ) = ẑ · ~h =
√
a(1− e2) cos i

then

2
r
− 1

a
− 2
√
a(1− e2) cos i = 2(1−m)

r1
+ 2m

r2
− C

The orbital elements (a, e, i) are referred to the barycenter of the system Star+planet and the

inclination is measured with respect to the orbital plane x̂ŷ of the planet. In the case of the solar

system m < 10−3 so it is possible to assume that (a, e, i) are heliocentric.

If the particle is not very close to the Sun we have r ' r1 then

1
a

+ 2
√
a(1− e2) cos i = 2m[ 1

r1
− 1

r2
] + C

If the particle is far from the sun and from the planet and taking into account that m < 10−3 we

obtain

C ' 1

a
+ 2
√
a(1− e2) cos i = T

T is known as the Tisserand parameter. In the R3BP C is constant and T presents some departures

if the orbital elements are determined when the conditions above are not satisfied (near the sun or

the planet). T should be considered as a simple form of calculating C.

For elliptic orbits it is possible to express T (q,Q, i) where q,Q are perihelion and aphelion:

T =
2

q +Q
+ 2
√

2qQ/(q +Q) cos i

This is a useful formula when analyzing regions where encounters are possible (q < 1, Q > 1).

(see figures 4-7)

5. ÖPIK BEGINS. THE ENCOUNTER VELOCITY, U

Suppose the particle is near the planet (r1 ' 1 and x2 +y2 ' 1) but far enough that we can neglect

its gravitational attraction (r ∼ RH) so the particle is ”at infinity” (m/r2 ' 0). Then from Jacobi’s
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integral:

v2
∞ ' 1 + 2 + 0− T

then, under the hypothesis above, the planetocentric velocity ”at infinity” of the particle is

v∞ '
√

3− T = U

U is the encounter velocity with the planet before the gravitational attraction is felt by the particle

(that means ”at infinity”). U is determined by T which is constant, so U is also constant. The orbital

elements (a, e, i) can evolve but T and U remain constant, only the orientation of ~U is modified (U

rotates γ after the encounter).

It follows that when T > 3 encounters cannot exist. When T < 3 they could exist but they are not

guaranteed. For example: a = 2, e = 0, i = 90o implies T = 0.5 but the particle never approaches

the planet.

If U ∼ 0 the planetocentric orbit is quasi-parabolic and a temporary capture by the planet is

possible. Then, objects with T ∼ 3 can experience temporary captures by the planet.

The greatest heliocentric velocity the particle can get after the encounter is Vp + U = 1 + U . The

escape velocity from the system is
√

2, so if U ≥
√

2 − 1 the particle eventually can escape from

the solar system and conversely if U <
√

2 − 1 the particle will never left the solar system by this

mechanism. Note that only prograde orbits have U < 1.

The final heliocentric velocity is a vectorial sum (see figure 8):

~V = ~Vp + ~U ′ or V 2 = 1 + U2 + 2U cos θ

being θ the angle between ~Vp and ~U ′. If U >
√

2 − 1 there exists some θ∞ so that for θ ≤ θ∞ the

corresponding V is greater than the ejection velocity. This situation occurs for

cos θ∞ = 1−U2

2U

If we can assume that ~U ′ is randomized (deflection γ is so great that θ can get all values from 0

to π) then the probability of ejection per encounter is equal to the probability P (θ ≤ θ∞) and

this is equal to the solid angle subtended by θ∞ over 4π which is equal to
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P∞ = P (θ ≤ θ∞) =
1

2
(1− cos θ∞) =

U2 + 2U − 1

4U
(U >

√
2− 1, γ > 90o)

Conversely, a comet in an hyperbolic heliocentric orbit has a probability of being captured after an

encounter and is equal to 1−P∞. These results are only valid for encounters satisfying the conditions

(U >
√

2 − 1, γ > 90o). These are very strong conditions, for example, a particle encountering the

Earth never satisfies γ > 90o with σ > σc. So, the P∞ should be weighted with the probability

P (γ ≥ 90o) which is very low. Weidenschilling (1975) recalculate this issue obtaining more realistic

values for the ejection probability (see figures 9-10). In section 9 we explain how to calculate this

issue.

6. GEOMETRY OF ENCOUNTERS

The velocity of encounter U form an angle θ with the planet’s heliocentric velocity (~Vp = ŷ) and is

rotated an azimuthal angle φ around ŷ (see figure 11). Then:

Ux = U sin θ sinφ

Uy = U cos θ

Uz = U sin θ cosφ

Assuming the asteroid is encountering the planet: r = 1 and V 2 = 2 − 1/a. The ”angular mo-

mentum” is
√
a(1− e2) = rVt where Vt is the transverse velocity. In consequence the radial velocity

evaluated at r = 1 is

V 2
r = V 2 − V 2

t = 2− 1/a− a(1− e2)

The encounter with the planet occurs at the line of the nodes of the asteroid’s orbit then (see figure

12):

Vy = Vt cos i

Vz = Vt sin i

Vx = Vr

Then the relative velocity ~U = ~V − ~Vp = (Vx, Vy − 1, Vz) has components

Ux = ±
√

2− 1/a− a(1− e2)

minus sign is for encounters at pre perihelion passage (ṙ < 0)



10

Uy =
√
a(1− e2) cos i− 1

Uz = ±
√
a(1− e2) sin i

minus sign is for encounters at the descending node of the asteroid’s orbit (ż < 0)

Conversely

a = 1
1−U2−2Uy

e =
√
U4 + 4U2

y + U2
x(1− U2 − 2Uy) + 4U2Uy

i = arctan Uz

1+Uy

or also

sin2 i = U2
z

U2
z +(1+Uy)2

If we define the heliocentric ”energy” of the particle as x = 1/a then we have

x = 1/a = (1− U2 − 2U cos θ)

and the variation in the energy due to the encounter is

∆x = 1/a′ − 1/a = 2U(cos θ − cos θ′)

Maximum variations in energy are (see figure 13): ∆x = 2U(1− cos γ(σ, U))

7. PROBABILITY OF ENCOUNTERS, P

Consider an asteroid in an heliocentric orbit with q < 1 (see figure 14). It crosses two times the

sphere of radius r = 1. We will find an expression for the probability of encounter with the planet

inside an impact parameter σ. We know that at r = 1 the radial velocity of the asteroid is Vr = Ux.

Then the time spent in the spherical shell of thickness dr and radius 1 is:

dt = 2dr/Ux

The probability per revolution to find the asteroid in the shell is:

dN = dt/P

being P the orbital period. The asteroid only can be found inside a band which is bounded by two

parallels of latitude ±i (see figure 15) and whose volume is
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dV = 4π sin idr

Assuming Ω and ω circulating, the average density of the asteroid in the volume is then

%i = dN/dV

Near the reference plane (where the planet revolves) the density is something small because of the

higher rate of variation of the latitude near the node of the asteroid. An analogy with the Sun can

help: the variation rate of the altitude of the Sun is higher at sunrise or sunset than at noon. Taking

this into account it is possible to show that the mean density near the reference plane is

%o =
2

π
%i

The planet is moving with respect to the asteroid with velocity U and it defines a small cylinder

with radius σ per unit of time given by

dV/dt = πσ2U

then the number of encounters per revolution is

dV/dt · %o · P

substituting

πσ2U · 2

π
dN/dV · P = πσ2U · 2

π

2dr

|Ux|P
1

4π sin idr
· P

then, the probability of an encounter with impact parameter ≤ σ per revolution is

p(σ) =
σ2U

π sin i|Ux|

This is the famous formula given by Öpik (1951), valid for σ < RH where the two body scheme

can be applied.
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The mean number of orbital revolutions between these encounters is

ν = 1/p

and the time in years between encounters (P is the orbital period)

τ = νP = a1.5/p

where a is in astronomical units.

The function p is a cumulative probability function. If we are interested in the probability of having

encounters with impact parameter between σ and σ + ∆σ:

p(σ + ∆σ)− p(σ) = ∆p = dp
dσ

∆σ

then

p(σ = σ∗) =
2σ∗U

π sin i|Ux|
(for σ∗ < RH)

Taking into account the probability density function above we can calculate the mean value <

σ > of the impact parameter for all possible values from 0 to RH (limit of validity of two body

approximation):

< σ >=
2

3
RH

The function p may vary between encounters because of variations of i and |Ux| but if we have a

population of N objects with similar orbits given by a distribution of orbital elements which can be

considered in a steady state, an average probability of the encounter per revolution can be devised:

p̄ = Σpi/N

If p represents the probability of elimination by collision with some planet or by ejection from the

population, the average lifetime of the particles in years can be estimated by

τ̄ =< a >1.5 /p̄

where < a > is the mean semimajor axis of the population.

Annually will be eliminated N/τ̄ , then the population will evolve as

dN = −(N/τ̄)dt

and the fraction of surviving objects after t years will be:

N/No = e−t/τ̄
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This exponential decay was critically revised by several authors (see figures 16 and 18). Numerical

integrations in general show that the population decay exponentially at the very beginning and then

a power law decay follows (N/No ∝ tα).

Example. Consider a NEO with (a, e, i) = (2, 0.7, 10o) and calculate the collision probability with

Earth. We obtain T = 2.489, U = 0.715, Ux = 0.69, then p(σc) = 1.9 · σ2
c and taking into account

σc = 4.9× 10−5 we obtain pc = 4.5× 10−9 which gives τ̄ = 628 millon years.

8. OMNIDIRECTIONAL ENCOUNTER PROBABILITIES

After N encounters the mean total deflection Γ of the relative velocity ~U can be estimated from

Γ2 = Σγ2
i = Nγ̄2

where γ̄ is a mean value generated by the mean encounter parameter < σ >. We can adopt

Γ = π/2 for full randomization, then the mean number of passages with σ < RH necessaries for full

randomization of γ is

N = π2/(4γ̄2)

For the example given above we have < σ >= 6.7 × 10−3 and γ̄ = 1.8 × 10−3 radians. Then

full randomization is acquired after N ∼ 800000 encounters with σ < RH . N is not the number

of revolutions just the number of encounters with σ < RH , we need to consider the probability

p(RH) = 0.00019 and the time between these types of encounters τ̄ = 14900 years. Then, to acquire

full randomization it is necessary to wait for t ∼ 11600 millon years. That means it is more probable

a collision with the Earth before full randomization.

For small U we have large values of γ and N is relatively small, then we can assume that the vector

~U is randomized so we can assume equipartition

< U2
x >=< U2

y >=< U2
z >= U2/3

and taking into account < Uy >= 0 we can estimate the mean orbital elements for a population

having omnidirectional encounters with the planet:
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< e2 >=
5

3
U2(1 +

2

5
U2)

< sin2 i >=
U2

3 + 2U2

then we can substitute U/|Ux| by its average value
√

3 and sin i by U√
3+2U2 obtaining the encounter

probability under the condition of randomization

p(σ) =
3
√

1 + 2
3
U2

πU
σ2 (~U randomized)

9. MODELING THE ORBITAL EVOLUTION

Arnold (1965) devised a Monte Carlo method (reformulated by several authors) to simulate the

orbital evolution of asteroids encountering the planets using the probability function obtained by

Öpik. Consider the spherical triangle whose sides are given by θ, γ, θ′ (see figure 17):

cos θ′ = cos θ cos γ + sin θ sin γ cosψ

defining

χ = φ− φ′

we can write

sinχ = sinψ sin γ/ sin θ′

cosχ = (cos γ sin θ − sin γ cos θ cosψ)/ sin θ′

Then we can simulate the evolution as follows:

We have an asteroid with (a, e, i). Check that q < 1 and Q > 1.

Calculate U and (Ux, Uy, Uz) taking aleatory sign for Ux, Uz.

Calculate (θ, φ).

From a probability distribution function proportional to σ we choose the impact parameter at

random (0 < σ < RH)....(do you know how to do this? .... change to a variable y that has uniform

distribution then σdσ = dy integrating: σ =
√

2y, so choose at random with equal probability y and

calculate σ). This is equivalent to choose at random σ2 from a uniform probability function between

0 < σ2 < R2
H .
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If σ < σc the particle impact the planet. If not, calculate the corresponding deflection angle γ.

Compute the mean time τ for this event and compute the time as t′ = t+ τ .

From a uniform probability distribution choose the azimuthal angle ψ at random (0 < ψ < 2π).

Calculate θ′(θ, γ, ψ).

Calculate χ(θ, γ, ψ, θ′).

Obtain φ′ = φ− χ.

Calculate the new (U ′x, U
′
y, U

′
z)

Calculate the new (a, e, i). If a < 0 the particle is ejected.

Choose a new set (σ, ψ).

If the asteroid’s orbit intersects various planets, the modeling must include the encounters with all

them.

Using the scheme above it is possible to numerically calculate the probability that the asteroid

experience some variation in its orbital elements. For example, if we want to know the probability of

having a certain ∆x in its energy we choose at random with uniform distribution several points in

the space (σ2
c ≤ σ2 ≤ R2

H , 0 ≤ ψ ≤ 2π) and calculate the corresponding ∆x. If that value is the one

we were looking for we increment a unit in a counter. After N points in the space (σ2, ψ) we will

succeed in Ns points. For N →∞ we can obtain the probability

p(∆x) =
Ns

N
· p(RH)

where p(RH) is the probability of an encounter with impact parameter below RH calculated with the

Öpik’s formula.

10. THEORY OF DIFFUSION

Previous to Öpik work some authors (Van Woerkom 1948, Oort 1950) analyzed the evolution of

the orbital ”energy” x = 1/a of the comets as a diffusion problem.

If < σ2
x > is the mean squared energy change per perihelion passage, the total mean change in

energy, ∆x, after N passages verify

< ∆x >2= N < σ2
x >

The number of passages necessaries to make ∆x = x is N = x2/ < σ2
x > and the number of years
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required is

tD = Nx−3/2 = x1/2/ < σ2
x >

this is the energy diffusion time.

From Yabushita (1980) it is possible to show that the median lifetime (when half of the population

is ejected) is tmed ∼ 4.77tD. A comparison of different models applied to simulate the evolution of

Chiron is given at figure 18.

11. THE PROBLEM OF THE ASYMMETRIES

Everhart (1969) numerically found that parabolic comets encountering Jupiter have not equal

probability of increasing or decreasing its orbital energy x = 1/a. That was known as the problem

of the asymmetries in the distribution of the ∆x due to the planetary perturbations. Considering

the Öpik formulation Carusi et al. (1990) explained the asymmetries as a natural consequence of

the outcomes of the encounters. For example, a parabolic comet with q = 0.1aJ and i = 27o has

T = 0.797 and U = 1.484 with respect to Jupiter. The maximum allowed changes in energy are

∆x = 1− U2 ± 2U which corresponds to ∆x = −4.17 and ∆x = +1.77 so is reasonable that for this

example negative changes ∆x are more probable than positive changes, that means ejection is more

probable than capture (see figure 19).

12. SOME CONCLUSIONS

The method as originally presented by Öpik in general overestimates the mean lifetime of the

populations because it does not take into account the strong changes in e due to the resonances (see

figure 20).

It cannot be applied to populations with very small U (see figure 21).

Collision probabilities predictions are consistent with numerical integrations (except collisions with

Sun).

It can be generalized to eccentric and inclined planetary orbits.

It gives order of magnitude valid results and it is very fast.

Numerical integrations in general show that the population decay exponentially at the beginning

and then a power law decay follow (N/No ∝ tα).
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Öpik 1976, Interplanetary Encounters.

Weidenschilling 1975, AJ 80, 145.

Carusi et al. 1990, CMDA 49, 111.

Valsecchi and Manara 1997, A&A 323, 986.

Dones et al. 1999, Icarus 142, 509.



18 CLOSE ENCOUNTERS 9 

LAN(T Head-on relohve veloctty t Final p . . 
velocity ~ A 11 
on out-going ~ 11" 

asymptote ~ .  d/J~ 

" .  Relative velocity,~ 

FIG. 2. The Opik method.  Approach velocity V (for 
impact parameter  b) is assumed equal to U, the veloc- 
ity for a head-on collision (b = 0) with the planet. V is 
taken as the asymptotic approach velocity for a two- 
body hyperbolic encounter.  Closest approach d and 
rotation angle 3' are based on the two-body encounter  
(see Eqs. (1) and (2)). The final velocity has the direc- 
tion of  the outgoing asymptote and the magnitude V. 

hyperbolic two-body encounter is thus 
taken to be U. The quantity b is taken as 
the "impact parameter" for the hyperbola 
(see Fig. 2), and the direction V × b defines 
the plane in which the hyperbola lies. The 
closest-approach distance d is given by the 
pericenter distance of the hyperbola (Eq. 
(1)). 

The change in orbital velocity is obtained 
from the rotation from incoming to outgo- 
ing asymptote. Thus V rotates by an angle 3' 
given by 

3' 2 sin-m[(1 + 2 4 2,M2~ 1/21 = b V / G  , ,tp! j .  (2) 

For purposes of computing the particle's 
new heliocentric orbital elements, the 
change in velocity is assumed to occur in- 
stantaneously at the time of the original 
unperturbed closest approach. This last 
assumption depends on the two-body 
encounter occurring quickly. 

Next we introduce some geometrical 
considerations and definitions that will be 
useful in our comparison of the Opik 
method with results from other methods. 
Suppose we know a particle orbit that gives 
a head-on collision. Slightly different initial 
(t = 0) values of the argument of pericenter 
too and mean anomaly M0 will offset the en- 
counter so as to give a nonzero b. In fact, 
there is a set of tOo, M0 values that all give 
the same value b; the locus of these points 
is a curve in tOo, M0 space, which generally 
circumscribes the value of tOo, M0 that gives 

head-on collision. We call this locus of ini- 
tial conditions an "isoline." (The proce- 
dure for computing the isoline is described 
in the Appendix.) 

The b plane is defined as the plane which 
contains the planet at the time of the head- 
on collision and is perpendicular to the rela- 
tive velocity U. In the Opik approximation, 
all trajectories originating on the same iso- 
line cross the b plane perpendicularly and 
on a circle of radius b around the collision 
trajectory. In effect, the b plane represents 
a sort of target, with velocity vectors at 
closest approach being analogous to darts 
hitting the target. Trajectories with initial 
conditions uniformly distributed on the too, 
M0 plane are also uniformly distributed 
around each target circle. 

The b plane geometry provides us with a 
useful coordinate system for visualizing the 
encounters as approximated by 0pik. Per- 
haps more importantly, it provides a means 
of representing the nature of encounters as 
computed by other methods and also a 
common framework for intercomparing the 
various methods. This reference system is 
sufficiently important to this work that we 
next define it more rigorously. First con- 
sider the X Y Z  coordinate system with ori- 
gin at the planet, X directed radially out- 
ward from the Sun, Y in the direction of 
motion of the planet, and Z normal to the 
planet's motion (Fig. 3a). The direction of 
U (relative velocity at the instant of head- 
on collision on unperturbed heliocentric or- 
bits) defines the normal to the b plane. This 
direction is represented in the X Y Z  system 
by the two angles 0 and ~b (Fig. 3b). 0 is the 
angle between U and ¥;  ~b is the polar angle 
around Y. The reference frame xyz  is de- 
fined by rotation about Y by angle ~b, fol- 
lowed by rotation about the new x axis by 
angle 0. Thus the y axis points in the direc- 
tion of relative velocity U, and the x axis is 
perpendicular to the direction of the plan- 
et's motion at an angle ~b from the X axis. 
The xz  plane is the "target" or b plane dis- 
cussed above. 

In the Opik approximation, the unper- 

Figure 1. Asteroid encountering a planet. Greenberg 1982.
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Figure 2. Deflection angle γ(σ, U).
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Figure 3. R3BP, rotating and inertial frames. Murray and Dermott 1999.
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Figure 4. Tisserand parameter T (q,Q, i = 0). The region below the diagonal is not real.
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Figure 5. Tisserand parameter T (q,Q, i = 0). The region where encounters are possible.
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Figure 6. Kresak’s diagram. Regions B and C corresponds to T < 3 and regions A, D and E to T > 3.

Asteroids II.
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Figure 7. Populations of minor bodies in space (1/a, T ). Bertotti et al. 2003.
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Figure 8. Öpik 1976.
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Figure 9. Collision versus ejection for terrestrial planets. Weidenschilling 1975.
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Figure 10. Collision versus ejection for jovian planets. Weidenschilling 1975.
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Figure 11. Orientation of U in the rotating frame. Carusi et al. 1990.
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Figure 12. Angular orbital elements referred to an inertial system.
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Figure 14. A collision orbit. Bottke et al. 1997.
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Figure 15. Crossing region. Öpik 1976.
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Figure 16. Fraction of survivors according to Öpik modeling and numerical integrations. Dones et al. 1999.
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Figure 17. New and old encounter velocity U . Carusi et al. 1990.
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Figure 18. Fraction of survivors according to different models. Dones et al. 1996.
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Figure 19. Asymmetric tails in the distribution of ∆x. Carusi et al. 1990.

Figure 20. Öpik method cannot take account for resonances. Dones et al. 1999.
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Figure 21. Öpik method fails when U is near zero. Dones et al. 1999.


