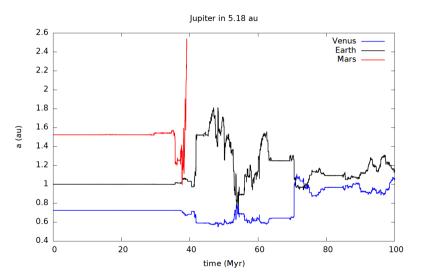
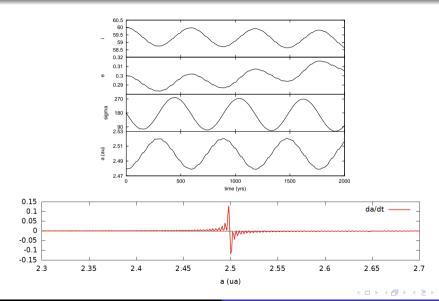
# Dinámica Secular y Resonante en Sistemas Planetarios o Las Resonancias después de las Resonancias


Proyecto CSIC I+D https://sites.google.com/view/udelarsistemasplanetarios/

Tabare Gallardo, Facultad de Ciencias, UdelaR, Uruguay

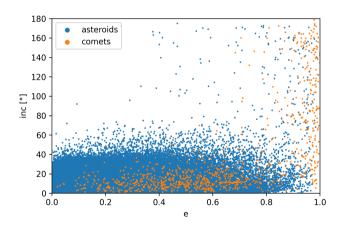

10 de Mayo de 2023



# Dinámica SECULAR + caótica



#### Dinámica RESONANTE

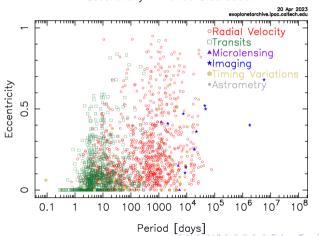


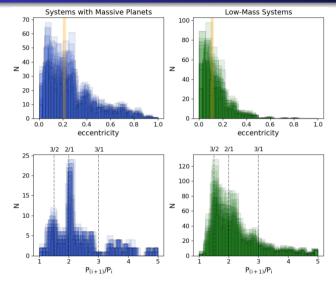

# Población objetivo

- dinámica de encuentros: caotica X
- dinámica secular: regular, semiejes constantes ✓
- dinámica resonante: todo oscila y evoluciona en grandes escalas de tiempo

Población objetivo: toda órbita excéntrica y/o inclinada de evolución continua

cuerpos menores (0 < a < 100 ua)



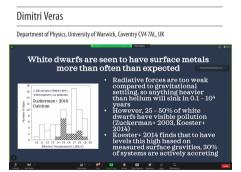


 ¿Cómo es la dinámica secular y resonante de cuerpos menores excéntricos y/o inclinados en el Sistema Solar?

#### exoplanetas

Eccentricity - Period Distribution

 ¿Cómo es la dinámica secular y resonante de sistemas planetarios excéntricos?






• ¿Por qué existen ciertas resonancias preferidas en los sistemas planetarios?

Beaugé and Ferraz-Mello, tbp



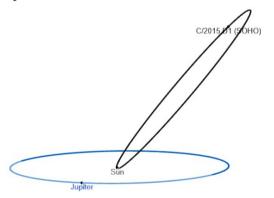
# Post-main-sequence planetary system evolution

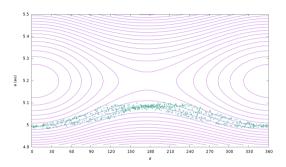


• ¿Cómo es la dinámica secular y resonante de **cuerpos menores** en sistemas planetarios excéntricos?

Excitación de sistemas planetarios en la etapa post secuencia principal.



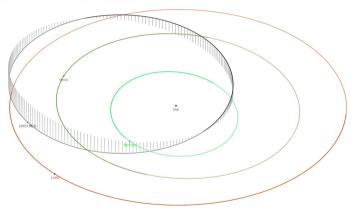

# ¿Por qué la obsesión con lo excéntrico?


- porque las teorías planas y de baja e están excelentemente desarrolladas
- porque no existían **modelos** generales para resonancias
- ahora existen y son nuestros (Gallardo 2020 y GBG21)
- necesitan ser chequeados
- oportunidad para ser aplicado a todos los objetos que no fueron estudiados: cometas, sungrazers, Planeta 9, coorbitales excéntricos, extrasolares...

**MODELO:** expresión *H*, cálculo *R*, sistema de referencia y variables, solución.

# Ejemplo bizarro

C/2015 D1 en quasi-resonancia 1:1 con Jupiter

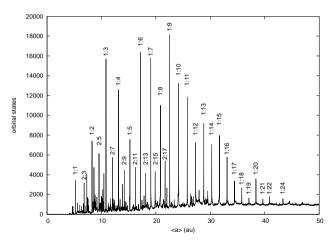





Hamiltoniano 1:1 (modelo G20), e integración numérica exacta del objeto.

#### 2023 BB1

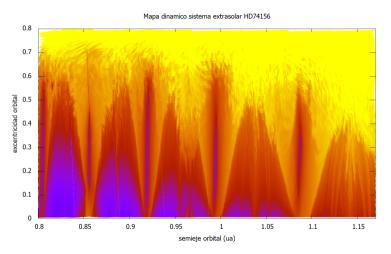
#### 2023 BB1 en resonancia 1:1 con Venus




animacion

**©Nicolas** 

# Resonancias son populares entre partículas excéntricas


Histograma de estados orbitales medios de cometas:

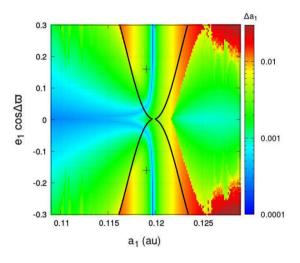


Fernandez et al., 2016

#### Resonancias son anchas

#### Mapa dinámico para HD 74156




# Modelos válidos para alta excentricidad (e > 0.6)

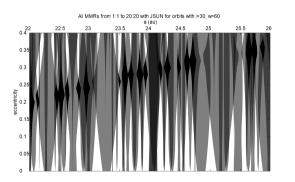
|                   | ASTEROIDAL                                                                          | PLANETARIO                                                                          |
|-------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                   |                                                                                     |                                                                                     |
| Secular           | ZLK circular y excéntrico espacial                                                  | ZLK espacial (Naoz,<br>De Elia) y caso plano<br>aplicado a extrasolares<br>(Beauge) |
| Resonante         | G20 (Schubart, Ferraz-<br>Mello, Moons)                                             | GBG21                                                                               |
| Secular resonante | caso plano (invariantes<br>adiabaticos, Pons) o plan-<br>eta circular (Saillenfest) | caso plano con amplitud de libracion 0 (Pons, Beust)                                |

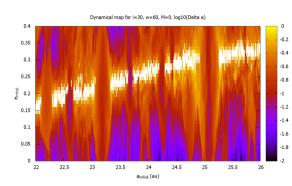
Desafío de modelos espaciales: muchas variables  $(\sigma, e, i, \varpi, \Omega)$ 



#### Limitaciones de nuestro modelo resonante




TOI-216 El modelo falla en las resonancias 2:1 y 3:2 cuando  $e \sim 0$  en caso plano (ley de estructura)


Giuppone et al. 2022



# Virtudes: modelo G20 versus mapa dinámico

#### Orbitas de i = 30 entre Urano y Neptuno:





# Cronograma

|                              | MES  |   |   |   |   |   |          |          |    |    |    |   |    |    |    |    |    |    |    |      |    |    |        |          |
|------------------------------|------|---|---|---|---|---|----------|----------|----|----|----|---|----|----|----|----|----|----|----|------|----|----|--------|----------|
| ACTIVIDAD                    | 1    | 2 | 3 | 4 | 5 | 6 | 7        | 8        | 9  | 10 | 11 |   | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20   | 21 | 22 | 23     | 24       |
| resonancias planetarias      | _    | _ | Ŭ | _ |   | Ŭ | <u> </u> | <u> </u> | Ť  |    |    |   | 10 |    | 10 | 10 |    |    | 10 |      |    |    |        |          |
| dinamica secular planetaria  |      |   |   |   |   |   |          |          |    |    |    |   |    |    |    |    |    |    |    |      |    |    |        | $\vdash$ |
| dinamica secular asteroidal  |      |   |   |   |   |   |          |          |    |    |    |   |    |    |    |    |    |    | -  |      |    |    | $\Box$ | $\vdash$ |
| resonancias asteroidales     |      |   |   |   |   |   |          |          |    |    |    |   |    |    |    |    |    |    |    |      |    |    |        |          |
| secular/resonante planetaria |      |   |   |   |   |   |          |          |    |    |    |   |    |    |    |    |    |    |    |      |    |    |        |          |
| secular/resonante asteroidal |      |   |   |   |   |   |          |          |    |    |    |   |    |    |    |    |    |    |    |      |    |    |        |          |
| compra de equipos            |      |   |   |   |   |   |          |          |    |    |    |   |    |    |    |    |    |    |    |      |    |    |        |          |
| participacion en RRLAA-UAI   |      |   |   |   |   |   |          |          |    |    |    |   |    |    |    |    |    |    |    |      |    |    |        |          |
| participacion en TallerCP    |      |   |   |   |   |   |          |          |    |    |    |   |    |    |    |    |    |    |    |      |    |    |        |          |
| participacion en CBDO        |      |   |   |   |   |   |          |          |    |    |    |   |    |    |    |    |    |    |    |      |    |    |        |          |
| participacion en SUF         |      |   |   |   |   |   |          |          |    |    |    |   |    |    |    |    |    |    |    |      |    |    |        |          |
| participacion en SUA         |      |   |   |   |   |   |          |          |    |    |    |   |    |    |    |    |    |    |    |      |    |    |        |          |
| AÑO                          | 2023 |   |   |   |   |   |          | 2024     |    |    |    |   |    |    |    |    |    |    |    | 2025 |    |    |        |          |
| MES                          | 4    | 5 | 6 | 7 | 8 | 9 | 10       | 11       | 12 | 1  | 2  | 3 | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11   | 12 | 1  | 2      | 3        |

• Sueldos: 2 Ayudantes de 18 meses, 1.031.000 pesos

• Equipos: 110.000 pesos



# Integrantes

- Responsable: T. Gallardo
- Ayudantes: J. Pons (planetas) y XX o XY (cuerpos menores)
- Colaboradores: N. Pan (tesis resonancias), E. Viera (tesis Planeta9), A. Rodriguez,
- Potenciales colaboradores: sacrificados estudiantes
- Antecedentes: V. Romero (pasantia), J. Pons (Tesis), V. Abraham (In. Inv.), L. Badano (T. Esp.)...

#### Dinámica RESONANTE

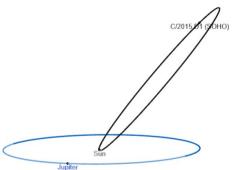
#### **ASTEROIDAL:**

- teorías analíticas especificas para bajas
  e, i (libros de texto)
- teorías analíticas especificas para i arbitraria y e acotada (Morais, Lei)
- teoría semi-analitica general Gallardo (2020) valida para todo (???)

#### PLANETARIA:

- teorías analíticas especificas para caso plano y bajas *e* (Batygin, Morbidelli)
- teorías analíticas especificas para caso plano y arbitraria e (desarrollo de Beauge)
- teoría semi-analitica general GBG (2021) valida para todo (???)

Semi-analitica: formalismo Hamiltoniano pero la función perturbadora (R) es numérica.


ver https://sites.google.com/view/mmresonances/home/literature



#### Dinámica SECULAR

- teorías analíticas para bajas e, i (Murray y Dermott)
- teorías semianaliticas para partículas arbitrarias con planetas circulares y coplanares (ZLK)
- teorías semianaliticas para caso plano (Beauge et al.)
  - ⇒ **teoría semianalitica general** (en desarrollo desde Gauss)

#### IDEA:



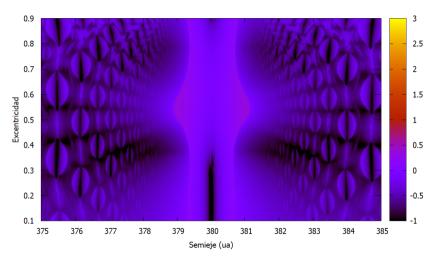
Modelo: elipses materiales que se perturban y deforman.

Ver Notas de Din. Orb. Sec. y Res.



#### Analítico versus semianalitico

 $\frac{1}{760}e^{5}a^{5}b|\frac{1}{2}$ , 5, 5|  $+\frac{477}{49}e^{5}s^{2}ab|\frac{1}{2}$ , 4, 8|  $+\frac{37}{16}e^{5}s^{2}a^{2}b|\frac{1}{2}$ , 4, 1|  $+\frac{3}{29}e^{5}s^{2}a^{3}b|\frac{1}{2}$ , 4, 2|  $+\frac{1}{66}e^{3}s^{2}a^{4}b|\frac{1}{2}$ , 4, 3|  $+\frac{277}{49}e^{5}s^{2}ab|\frac{1}{2}$ ,  $\frac{1}{96}e^{3}s^{2}\alpha^{4}b\left[\frac{3}{2},6,3\right] + \frac{2375}{92}e^{3}b\left[\frac{1}{2},5,6\right]\left(e^{\prime}\right)^{2} + \frac{4673}{92}e^{3}\alpha b\left[\frac{1}{2},5,1\right]\left(e^{\prime}\right)^{2} + \frac{295}{92}e^{3}\alpha^{2}b\left[\frac{1}{2},5,2\right]\left(e^{\prime}\right)^{2} - \frac{115}{92}e^{3}\alpha^{3}b\left[\frac{1}{2},5,3\right]\left(e^{\prime}\right)^{2}$  $\frac{1}{2}e^{3}\alpha^{4}b\left[\frac{1}{2},5,4\right]\left(e^{r}\right)^{2}-\frac{1}{122}e^{3}\alpha^{5}b\left[\frac{1}{2},5,5\right]\left(e^{r}\right)^{2}+\frac{277}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,9\right]\left(s^{r}\right)^{2}+\frac{37}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}{2},4,1\right]\left(s^{r}\right)^{2}+\frac{9}{27}e^{3}\alpha^{5}b\left[\frac{3}$  $\frac{1}{26}e^{3}\alpha^{4}b\left[\frac{3}{2},4,3\right]\left(s'\right)^{2}+\frac{277}{22}e^{3}\alpha b\left[\frac{3}{2},6,0\right]\left(s'\right)^{2}+\frac{37}{26}e^{3}\alpha^{2}b\left[\frac{3}{2},6,1\right]\left(s'\right)^{2}+\frac{9}{26}e^{3}\alpha^{3}b\left[\frac{3}{2},6,2\right]\left(s'\right)^{2}+\frac{1}{26}e^{3}\alpha^{4}b\left[\frac{3}{2},6,3\right]\left(s'\right)^{2}$  $g\cos\left[2\,\lambda+2\,\varpi-5\,\lambda'+\varpi'\right]\,\mathrm{m'}\,\left(\frac{99}{9}\,\mathrm{e}^{2}\,\mathrm{b}\left[\frac{1}{\pi},\,4,\,9\right]\,\mathrm{e'}-\frac{447}{9}\,\mathrm{e}^{4}\,\mathrm{b}\left[\frac{1}{\pi},\,4,\,9\right]\,\mathrm{e'}+\frac{23}{9}\,\mathrm{e}^{2}\,\mathrm{a}\,\mathrm{b}\left[\frac{1}{\pi},\,4,\,1\right]\,\mathrm{e'}-\frac{679}{99}\,\mathrm{e}^{4}\,\mathrm{a}\,\mathrm{b}\left[\frac{1}{\pi},\,4,\,1\right]\,\mathrm{e'}+\frac{25}{99}\,\mathrm{e}^{2}\,\mathrm{a'}\,\mathrm{b}\left[\frac{1}{\pi},\,4,\,2\right]$  $\frac{1}{46}e^2\alpha^3b\left[\frac{1}{2},4,3\right]e'+\frac{9}{9}e^4\alpha^3b\left[\frac{1}{2},4,3\right]e'+\frac{29}{102}e^4\alpha^4b\left[\frac{1}{2},4,4\right]e'+\frac{1}{102}e^4\alpha^5b\left[\frac{1}{2},4,5\right]e'-\frac{145}{9}e^2s^2\alpha b\left[\frac{3}{2},3,0\right]e'-\frac{117}{16}e^2s^2\alpha^2$  $\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},3,3\right]e^{2}-\frac{145}{20}e^{2}s^{2}ab\left[\frac{3}{2},5,0\right]e^{2}-\frac{117}{20}e^{2}s^{2}a^{2}b\left[\frac{3}{2},5,1\right]e^{2}-\frac{7}{20}e^{2}s^{2}a^{3}b\left[\frac{3}{2},5,2\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}s^{2}a^{4}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}a^{2}a^{2}b\left[\frac{3}{2},5,3\right]e^{2}-\frac{1}{20}e^{2}a^{2}a$  $\frac{495}{232}e^{2}\alpha^{2}b\left[\frac{1}{2},4,2\right](e')^{3}+\frac{309}{232}e^{2}\alpha^{3}b\left[\frac{1}{2},4,3\right](e')^{3}+\frac{35}{232}e^{2}\alpha^{4}b\left[\frac{1}{2},4,4\right](e')^{3}+\frac{1}{232}e^{2}\alpha^{5}b\left[\frac{1}{2},4,5\right](e')^{3}-\frac{145}{232}e^{2}\alpha b\left[\frac{3}{2},3,9\right]e'$  $\frac{7}{9}e^{2}\alpha^{3}b\left(\frac{3}{9},3,2\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{145}{9}e^{2}\alpha b\left(\frac{3}{9},5,0\right)e^{4}(s^{2})^{2}-\frac{117}{16}e^{2}\alpha^{2}b\left(\frac{3}{9},5,1\right)e^{4}(s^{2})^{2}-\frac{7}{9}e^{2}\alpha^{3}b\left(\frac{3}{9},5,2\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{145}{9}e^{2}\alpha^{2}b\left(\frac{3}{9},5,2\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{145}{9}e^{2}\alpha^{2}b\left(\frac{3}{9},5,2\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{145}{9}e^{2}\alpha^{2}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{145}{9}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3,3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9},3\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9}a^{2}\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^{2}\alpha^{4}b\left(\frac{3}{9}a^{2}\right)e^{4}(s^{2})^{2}-\frac{1}{29}e^$  $\frac{1}{\pi^{2}} \mathcal{G} \cos \left[ 2\,\lambda + \pi - 5\,\lambda^{\prime} + 2\,\pi^{\prime} \right] \, \text{m}^{\prime} \left[ -\frac{201}{9} \, \text{e} \, \text{b} \left[ \frac{1}{9}, \, 3, \, \theta \right] \, \left( e^{\prime} \right)^{2} + \frac{2211}{32} \, e^{3} \, \text{b} \left[ \frac{1}{9}, \, 3, \, \theta \right] \, \left( e^{\prime} \right)^{2} - \frac{193}{36} \, e^{3} \, \text{b} \left[ \frac{1}{9}, \, 3, \, 1 \right] \, \left( e^{\prime} \right)^{2} + \frac{1953}{64} \, e^{3} \, \text{b} \, \left[ \frac{1}{9}, \, 3, \, 1 \right] \, \left( e^{\prime} \right)^{2} - \frac{193}{64} \, e^{3} \, \text{b} \, \left[ \frac{1}{9}, \, 3, \, 1 \right] \, \left( e^{\prime} \right)^{2} + \frac{1953}{64} \, e^{3} \, \text{b} \, \left[ \frac{1}{9}, \, 3, \, 1 \right] \, \left( e^{\prime} \right)^{2} + \frac{1953}{64} \, e^{3} \, \text{b} \, \left[ \frac{1}{9}, \, 3, \, 1 \right] \, \left( e^{\prime} \right)^{2} + \frac{1953}{64} \, e^{3} \, \text{b} \, \left[ \frac{1}{9}, \, 3, \, 1 \right] \, \left( e^{\prime} \right)^{2} + \frac{1953}{64} \, e^{3} \, \text{b} \, \left[ \frac{1}{9}, \, 3, \, 1 \right] \, \left( e^{\prime} \right)^{2} + \frac{1953}{64} \, e^{3} \, \text{b} \, \left[ \frac{1}{9}, \, 3, \, 1 \right] \, \left( e^{\prime} \right)^{2} + \frac{1953}{64} \, e^{3} \, \text{b} \, \left[ \frac{1}{9}, \, 3, \, 1 \right] \, \left( e^{\prime} \right)^{2} + \frac{1953}{64} \, e^{3} \, \text{b} \, \left[ \frac{1}{9}, \, 3, \, 1 \right] \, \left( e^{\prime} \right)^{2} + \frac{1953}{64} \, e^{3} \, \text{b} \, \left[ \frac{1}{9}, \, 3, \, 1 \right] \, \left( e^{\prime} \right)^{2} + \frac{1953}{64} \, e^{3} \, \text{b} \, \left[ \frac{1}{9}, \, 3, \, 1 \right] \, \left( e^{\prime} \right)^{2} + \frac{1953}{64} \, e^{3} \, \text{b} \, \left[ \frac{1}{9}, \, 3, \, 1 \right] \, \left( e^{\prime} \right)^{2} + \frac{1953}{64} \, e^{3} \, \text{b} \, \left[ \frac{1}{9}, \, \frac{$  $\frac{87}{20}e^{3}\alpha^{2}b\left[\frac{1}{2},3,2\right]\left(e^{\prime}\right)^{2}-\frac{1}{15}e^{3}b\left[\frac{1}{2},3,3\right]\left(e^{\prime}\right)^{2}-\frac{285}{202}e^{3}\alpha^{3}b\left[\frac{1}{2},3,3\right]\left(e^{\prime}\right)^{2}-\frac{1}{2}e^{3}\alpha^{4}b\left[\frac{1}{2},3,4\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3,5\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5}b\left[\frac{1}{2},3\right]\left(e^{\prime}\right)^{2}-\frac{1}{150}e^{3}\alpha^{5$  $\frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 2, 1 \end{bmatrix} (e')^2 + \frac{29}{23} e s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 2, 2 \end{bmatrix} (e')^2 + \frac{1}{23} e s^2 \alpha^4 b \begin{bmatrix} \frac{3}{2}, 2, 3 \end{bmatrix} (e')^2 + \frac{595}{23} e s^2 \alpha b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 + \frac{245}{23} e s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 +$  $\frac{29}{23} e s^2 \alpha^3 b \left[ \frac{3}{2}, 4, 2 \right] (e')^2 + \frac{1}{23} e s^2 \alpha^4 b \left[ \frac{3}{2}, 4, 3 \right] (e')^2 + \frac{2279}{16} e b \left[ \frac{1}{2}, 3, 0 \right] (e')^4 + \frac{331}{6} e \alpha b \left[ \frac{1}{3}, 3, 1 \right] (e')^4 - \frac{133}{66} e \alpha^2 b \left[ \frac{1}{3}, 3, 2 \right] (e')^4$  $\frac{19}{5} e \alpha^4 b \left[ \frac{1}{5}, 3, 4 \right] (e')^4 - \frac{1}{122} e \alpha^5 b \left[ \frac{1}{5}, 3, 5 \right] (e')^4 + \frac{595}{52} e \alpha b \left[ \frac{3}{5}, 2, \theta \right] (e')^2 (s')^2 + \frac{245}{52} e \alpha^2 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^3 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{52} e \alpha^2 b \left[ \frac{3}{5}, 2, 1 \right] (e')^2 (s')^2 + \frac{29}{5$  $\frac{1}{20} e^{\alpha^4} b \begin{bmatrix} \frac{3}{2}, 2, 3 \end{bmatrix} (e')^2 (s')^2 + \frac{595}{20} e^{\alpha} b \begin{bmatrix} \frac{3}{2}, 4, \theta \end{bmatrix} (e')^2 (s')^2 + \frac{245}{20} e^{\alpha^2} b \begin{bmatrix} \frac{3}{2}, 4, 1 \end{bmatrix} (e')^2 (s')^2 + \frac{29}{20} e^{\alpha^3} b \begin{bmatrix} \frac{3}{2}, 4, 2 \end{bmatrix} (e')^2 (s')^2 + \frac{29}{20} e^{\alpha^3} b \begin{bmatrix} \frac{3}{2}, 4, 2 \end{bmatrix} (e')^2 (s')^2 + \frac{29}{20} e^{\alpha^3} b \begin{bmatrix} \frac{3}{2}, \frac{3}{2} \end{bmatrix} (e')^2 (e')^2 (e')^2 (e')^2 + \frac{29}{20} e^{\alpha^3} b \begin{bmatrix} \frac{3}{2}, \frac{3}{2} \end{bmatrix} (e')^2 (e')$  $g\cos[2\lambda-5\lambda'+3\pi']\pi'\left[\frac{389}{40}b\left[\frac{1}{3},2,\theta\right](e')^3-\frac{389}{40}e^2b\left[\frac{1}{3},2,\theta\right](e')^3+\frac{67}{40}\alpha b\left[\frac{1}{3},2,1\right](e')^3-\frac{599}{40}e^2\alpha b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2,1\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3},2\right](e')^3+\frac{9}{40}\alpha^2b\left[\frac{1}{3}\alpha^$  $\frac{1}{40}\alpha^{5}b\left[\frac{1}{3},2,3\right](e')^{3}+\frac{359}{100}e^{2}\alpha^{5}b\left[\frac{1}{3},2,3\right](e')^{3}+\frac{35}{100}e^{2}\alpha^{4}b\left[\frac{1}{3},2,4\right](e')^{3}+\frac{1}{100}e^{2}\alpha^{5}b\left[\frac{1}{3},2,5\right](e')^{3}-\frac{295}{100}e^{2}\alpha^{5}b\left[\frac{3}{3},1,\theta\right](e')^{3}$  $\frac{5}{26} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 1, 2 \end{bmatrix} (e^i)^3 - \frac{1}{26} s^2 \alpha^4 b \begin{bmatrix} \frac{3}{2}, 1, 3 \end{bmatrix} (e^i)^3 - \frac{295}{16} s^2 \alpha b \begin{bmatrix} \frac{3}{2}, 3, 0 \end{bmatrix} (e^i)^3 - \frac{85}{16} s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 3, 1 \end{bmatrix} (e^i)^3 - \frac{5}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^2 b \begin{bmatrix} \frac{3}{2}, 3, 1 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 2 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 3 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 3 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 3 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 3 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 3 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 3 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 3 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 3 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 3 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 3 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac{3}{2}, 3, 3 \end{bmatrix} (e^i)^3 - \frac{1}{16} s^2 \alpha^3 b \begin{bmatrix} \frac$ 




VS

# Metodología

- modelo semianalitico **resonante**: chequear, mejorar, aplicar (Tesis N. Pan)
- modelo semianalitico **resonante secular**: Tesis J. Pons, llevar al caso espacial (ZLK resonante)
- modelo semianalitico **secular**: tosco modelo a mejorar, aplicar
  - PROBLEMA: muchos grados de libertad (Tesis E. Viera)
- achatamiento, relatividad, mareas, evolución estelar?
- mapas dinámicos
- mapas de caos
- integraciones (evorb, REBOUND)

#### Resonancias del Planeta 9



Tesis E. Viera, en preparación

# Resonancia planetaria - caos - estabilidad

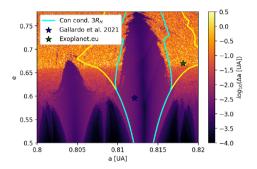
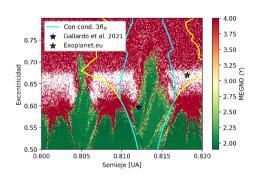




Fig. 7: Curvas teóricas de la resonancia 16:3 sobre el mapa dinámico. Notemos como los encuentros disminuyen la zona estable.



**Fig. 8:** Mapa de Caos construido con el indicador *MEGNO*. ⟨*Y*⟩ > 2 implica evolución caótica.

poster N. Pan, 2022

# Evolucion secular de resonancia planetaria

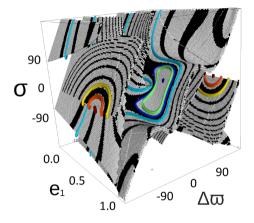



Figura 4.28: Superficie  $\mathcal{H}_1$  en la MMR 3:1 comparada con 7 integraciones numéricas (en colores) de 10 kyrs de un sistema con  $m_2/m_1 = 5$  y  $\mathcal{AM}_{norm} = 0.8$ .

Tesis J. Pons, 2022



# muchas gracias

siga las novedades en https://sites.google.com/view/udelarsistemasplanetarios/

