# Orbital stability in the Solar System for arbitrary inclinations and eccentricities.

1

## Tabaré Gallardo, gallardo@fisica.edu.uy

Facultad de Ciencias, Universidad de la República, Uruguay.

3

## METHOD

**Dynamical maps** obtained with numerical integrations of test particles inside a grid in the space (a,i) with initial e=0, 0.1,... 0.9 and random initial  $\Omega$ ,  $\omega$ , M. The maximum  $\Delta a/a$  detected after 1000 orbital revolutions is plotted in color code.

| Dark: ∆a/a ~ 0.001               |
|----------------------------------|
| very small $\Delta a$ typical of |
| stable secular evolution         |
| SECULAR                          |

Pale tone: ∆a/a ~ 0.01 small ∆a typical of resonant evolution RESONANT

Bright:  $\Delta a/a > 0.1$ large  $\Delta a$  typical of chaotic evolution CHAOS

## GOAL

2

To study the orbital stability of test particles in the Solar System in the space (a,e,i) defined by 0 < a < 38 au, 0 < e < 0.9 and **0 < i < 180**.

## WHY?

Minor bodies are in the midst of a struggle between random destructive **planetary perturbations** and the synchronized **resonant** ones. Sometimes, for some region in the space (a,e,i) resonances dominate providing predictive behavior. And sometimes it is just the chaos. Our maps are the result of that struggle.

#### **TWO NOTABLE FACTS:**

1) Resonances exist even for **retrograde** orbits (Namouni and Morais 2015, Gallardo 2019a, Li et al. 2019) 2) Sometimes only retrograde resonant orbits survive while direct

ones are destroyed (Fernández et al. 2016)

The **known population** of retrograde objects with a<40 au.

#### Venus and Earth's coorbitals







#### REFERENCES

Fernández, Gallardo and Young 2016, The end states of long-period comets and the origin of Hal*ley-type comets.* MNRAS 461, 3075.

*in the solar system*. Icarus 317, 121.

planetary perturbations versus resonances. MNRAS 487, 1709.

Gallardo 2019c, www.fisica.edu.uy/~gallardo/atlas/ra/

Li, Huang and Gong 2019, Survey of asteroids in retrograde mean motion resonances with planets. A&A in press.

Namouni and Morais 2015, *Resonance capture at arbitrary inclination*. MNRAS 446, 1998.

Acknowledgements. CSIC (UdelaR), PEDECIBA, ANII, you.

Vertical lines are due to concentrations of resonant orbital states, mainly 1:N with Jupiter. Note the captures in retrograde resonances where perturbations are weaker (Gallardo 2019b).