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Multistability in the long term dynamics of the Mackey-Glass (MG) delayed model is analyzed by

using an electronic circuit capable of controlling the initial conditions. The system’s phase-space is

explored by varying the parameter values of two families of initial functions. The evolution

equation of the electronic circuit is derived and it is shown that, in the continuous limit, it exactly

corresponds to the MG model. In practice, when using a finite set of capacitors, an excellent

agreement between the experimental observations and the numerical simulations is manifested. As

the delay is increased, different periodic or aperiodic solutions appear. We observe abundant

periodic solutions that have the same period but a different alternation of peaks of dissimilar

amplitudes and propose a novel symbolic method to classify these solutions. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4918593]

Multistability, i.e., the coexistence of several attractors

for a given set of parameters, is a characteristic feature

of nonlinear systems, and in particular, of systems with

time-delays. One paradigmatic example of time-delayed

system is the well-known Mackey-Glass (MG) equation,

which models physiological processes, mainly respiratory

and hematopoietic (i.e., formation of blood cellular com-

ponents) diseases. In time-delayed systems, the evolution

of the system at a given time not only depends on the state

of the system at the current time but also on the state of

the system at previous times. The dynamics of processes

involving time delays, as those studied by MG, is far

more complex than that of non-delayed, i.e., instantane-

ous, systems. Actually, if the dynamics of a system at time

t depends on the state of the system at a previous time

t – s, the information needed to predict the evolution is

contained in the entire interval (t � s, t). Thus, the evolu-

tion of a delayed system depends on infinite previous

values of the variables. In mathematical terms, delayed

systems are modeled in terms of delayed differential

equations (DDEs). The MG model exhibits, as the delay

increases, a rich variety of behaviors including periodic

and chaotic solutions. Here, using a novel electronic

implementation of a MG model, we investigate the orga-

nization of the trajectories by varying the initial condi-

tions, and identify and classify the coexisting periodic

solutions, both, in observations and in model simulations.

I. INTRODUCTION

Chaotic systems are characterized by unpredictable

behavior; however, it is well known that they exhibit a

certain degree of regularity and structure. Nonlinear systems

often display multistability, that is, the coexistence of differ-

ent attractors for the same set of parameters. From observed

noisy time-series that display similar oscillatory patterns,

identifying and distinguishing different coexisting attractors

are a challenging task, in particular, when noise induces

switching among different attractors. Recently, the phenom-

enon of extreme multistability has been predicted numeri-

cally in systems of coupled oscillators1 and experimental

observations in a system of two coupled Rossler-like oscilla-

tors were found to be consistent with the numerical predic-

tions: by constructing an electronic circuit representing the

system, Patel et al.2 demonstrated a controlled switching to

different attractor states through a change in initial condi-

tions only, keeping fixed the system’s parameters. While in

most multi-stable systems chaotic attractors are rare,3

systems with time delays are an exception to this rule. A

time-delay renders the phase space of a system infinite-

dimensional, as one needs to specify, as initial condition, the

value of a function, F0, over the time interval (�s, 0), with s
being the delay time. This initial condition is referred to as

the initial function (IF). Time-delayed systems often display

coexisting, high-dimensional attractors.4–9

Time-delays occur in a wide range of real-world

systems, either due to couplings or to feedback loops (for

recent reviews, see Refs. 10 and 11), and many practical

applications have been demonstrated, for example, it has

been shown that delay-dynamical systems, even in their

simplest manifestation, can perform efficient information

processing,12 and the high dimensionality of the chaotic dy-

namics that they generate can be exploited for implementing

ultra-fast random number generators.13,14

A paradigmatic time-delayed system is the Mackey-

Glass (MG) model,15 which exhibits a rich variety of peri-

odic and complex behaviors. The MG model, a first-order

nonlinear delayed differential equation, was proposed in

1977 by Mackey and Glass to model physiological systems,

mainly respiratory and hematopoietic diseases (i.e., forma-

tion of blood cellular components).15 The onset of these

diseases is associated with alterations (bifurcations) in the
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periodicity of physiological variables, for example, irregular

breathing patterns or fluctuations in peripheral blood cell

counts.16–18

In this work, we describe an experiment using an elec-

tronic circuit designed to mimic the Mackey-Glass delay

differential equation. The discrete equations governing the

dynamics of the circuit are presented. We show that, in spite

of the fact that in the electronic circuit the infinite phase

space of the MG system is discretized via a finite set of N
values; if N is large enough the electronic circuit is indeed a

highly precise implementation of the MG model. Then, we

study the multistability of coexisting solutions by distin-

guishing and classifying different periodic and aperiodic

solutions using a symbolic-dynamic algorithm. The agree-

ment between the experimental observations and numerical

simulations is verified using cross-correlation functions.

This paper is organized as follows: in Sec. II, the MG

model is introduced and previous results discussed. In

Sec. III, the Mackey-Glass electronic analog is described,

the system to control the IF is presented and the discrete

equations of the circuit derived. The results are presented in

Sec. IV, the experimental and numerical temporal series and

bifurcation diagrams are compared in order to demonstrate

that the electronic circuit perfectly reproduces the MG

model. In this section, the coexistence of periodic and aperi-

odic solutions is analyzed and the correspondence with spe-

cific analytical results is discussed. Finally, Sec. V presents a

summary of the results and the conclusion.

II. THE MG MODEL

In their original paper,15 Mackey and Glass considered a

population of mature circulating white blood cells. In this

physiological process, there is a delay, s, between the initia-

tion of cellular production in the bone narrow and their

release into the blood. The dynamics of the density of blood

cells is increasingly complex as the delay grows. When there

is no delay, s¼ 0, there is a stable equilibrium point which

becomes unstable with increasing delay and different peri-

odic solutions appear. As the delay further increases, a

sequence of bifurcations generates oscillations with higher

periods and eventually aperiodic behavior.19

Over the years, the dynamics of the MG model has been

investigated numerically,20–25 and it has been used to gener-

ate high-dimensional chaotic signals.26 The MG model has

also been used as a toy model to study chaotic synchroniza-

tion in delayed systems.27–29 Another appealing application

of the MG model, and also of other systems exhibiting multi-

stability, is the possibility of storing information in the tem-

poral patterns present in the different co-existing solutions.

This capability was demonstrated by Lim et al. using a

hybrid diode laser system.30

Several groups have proposed experimental implemen-

tations of the MG model via electronic circuits.5,19,29,31–33

An electronic implementation based on an analog delay line
was considered in Refs. 19, 28, and 31 to address the prob-

lem of synchronization and control of high dimensional

chaos. The analog delay line is the electronic analog of a

chain of masses and springs and, broadly speaking, generates

an effective delay only for low enough frequencies. This

approach was extended in the design proposed in Ref. 34 to

analyze synchronization in systems with multiple feedbacks.

Digital electronic implementations of other delayed systems,

using programmable hardware, were recently proposed in

Ref. 32. In this case, it is necessary to convert the signal

from the RC circuit to the digital domain, apply the delay

and convert back to the analog domain.

Multistability in DDEs and, in particular, in the MG was

studied in various papers.5,35,36 The dependence of the solu-

tions on the initial function in the MG model and in other

first order DDEs was investigated by Losson et al.5 They

showed, by means of numerical and experimental methods,

that the basins of attraction of piecewise constant feedback

DDE can possess a complex structure at all scales measura-

ble numerically. Specifically in relation with the MG model,

Losson et al. focus on a family of sinusoidal IFs, which

parameter values give rise to limit cycles either with strictly

positive or negative values of the variable. Mensour

et al.35,36 focused on the multistability exhibited by first-

order DDEs at large delay-to-response ratios with the design

of dynamical memory devices in mind. They also showed

that a finite message can be stored in a periodic waveform

and that its storage capability is enhanced by the control of

unstable periodic orbits in the chaotic regime. The scope of

the present work is to take advantage of a recently proposed

electronic implementation33 to investigate the coexistence of

different, but very similar, high-dimensional periodic and

aperiodic solutions.

The Mackey-Glass delay-differential equation, as

expressed in the original work, is15

dP

dt
¼ b0H

nPs

Hn þ Pn
s
� cP; (1)

where P is the density of mature circulating white blood

cells, s is the delay time, and Ps¼P(t� s). The parameters

H and b0 and the exponent n are related to the production of

white blood cells while c represents the decay rate.

The number of parameters can be reduced by re-scaling

the variables x¼P/h and t0 ¼ tc. After the re-scaling, a sim-

plified equation for xðt0Þ for the MG model is obtained

dx

dt0
¼ a

xC

1þ xn
C

� x; (2)

where C¼ cs is the normalized delay time, a¼ b0/c, and

xC ¼ xðt0 � CÞ.

III. THE EXPERIMENT

A. Electronic circuit

The electronic implementation of the MG model, as

given by Eq. (2), consists of a RC circuit, delay and function

blocks and a system to control the initial conditions. The pur-

pose of the delay block is to copy its input as an output after

some delay time while the function block implements the

nonlinear function. A schematic view of the circuit is shown

in Fig. 1, a detailed description can be found in Ref. 33.

043112-2 Amil et al. Chaos 25, 043112 (2015)
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The implementation of delay block with analog elec-

tronic is possible by employing a Bucket Brigade Device
(BBD), which is a discrete-time analog device. Internally, it

contains an array of N capacitors in which a signal travels

one step at a time. The origin of the name comes from the

analogy with the term bucket brigade, used for a line of peo-

ple passing buckets of water. In this work, we used the inte-

grated circuits MN3011 and MN3101 as BBD and clock

signal generator, respectively.

This approach for implementing a delay approxi-

mates the desired transfer function given by vout(t)¼ vin(t
– s), by sampling the input signal and outputting those

samples N clock periods later. Thus, if dt is the clock pe-

riod, the delay time is s¼Ndt. In the MN3011 dt can

vary between 5 ls and 50 ls. The number of capacitors,

N, can be selected among the values provided by the

manufacturer; for our devices, N¼ 396, 662, 1194, 1726,

2790, and 3328.

The function block, indicated in Fig. 2, was imple-

mented here for an exponent n¼ 4. Other values of n could

be similarly implemented. Integrated circuits AD633JN and

AD712JN were used to implement sums, multiplications,

and divisions because of their simplicity, accuracy, low

noise, and low offset voltage. Additional details about the

pre- and post-amplification and the evaluation of the inputs

and outputs of the delay and the nonlinear functions are

described in Ref. 33.

B. Control of initial conditions

A remarkable advantage of this electronic implementa-

tion is that different input signals (i.e., different functions of

time) may be selected as initial conditions. As the initial

function is fully controlled by the computer, it is easy and

straightforward to analyze the evolution of the MG system

starting from arbitrary initial conditions.

The initial conditions are given by the voltages in the

capacitors, which are defined by an input signal of duration

greater than the delay time. A relay synchronized with an

analog output of a personal computer (PC) was used as

depicted in Fig. 1. This setup allows to switch the system

between a free evolution (i.e., the evolution of the electronic

model as described: RC circuit, nonlinear function and delay

block) in the normal closed (NC) position of the relay, and a

controlled evolution in the normal open (NO) position. In

this way, with the relay in the NO position, the initial values

stored in the delay line (defined by the input signal) were

fully controlled by the PC. Then, the relay was set to the NC

position, the circuit evolved freely, we measured the voltage

immediately after the delay block, and reconstructed the

voltage in the capacitor with a tuned digital filter.

C. Model discretization

By applying Kirchhoff’s laws to the circuit shown in

Fig. 1 with the relay in the NC position, the equation describ-

ing the voltage at the capacitor terminals, v, is

dv
dt
¼ 1

RC
f vsð Þ � v
� �

; (3)

where vs¼ v(t� s) and f vð Þ ¼ b v
hnþvn, with b and h circuit

constants. Using the definition of the dimensionless time

t0 ¼ tc, setting the characteristic time-scale of the system as

RC¼ c�1, and f as the nonlinear function of the MG model,

this equation can be identified with Eq. (2).

To analyze whether the electronic circuit described in

Sec. III A indeed represents the MG model (i.e., to assess the

impact of the implementation of the delay via an array of N
capacitors in the Bucket Brigade Device), we first discretize

the MG delay-differential equation (as in Eq. (3)) and then

compare the simulations of the discretized MG model with

observations from the electronic circuit.

FIG. 1. Experimental setup. The electronic circuit consists of two passive

elements, R and C, and two blocks, one implements the nonlinear function,

f(v), and the other the delay. The initial conditions can be arbitrarily set by

using the relay which allows to switch between a free evolution in the NC

position, and a controlled evolution in the NO position. The relay state and

the voltage in the NC position are controlled by a PC.

FIG. 2. Electronic implementation of

the nonlinear function. Resistor values:

R1¼ 20 kX, R2¼ 56 kX, R3¼ 20 kX,

R4¼ 2 kX, and R5¼ 56 kX.

043112-3 Amil et al. Chaos 25, 043112 (2015)
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The usual way to discretize a delay-differential equation

is to approximate the delayed term f(vs) as constant in the

small time interval (t, tþ dt). In this way, one can integrate

Eq. (3) and obtain

vðtþ dtÞ ¼ ½vðtÞ � f ðvsÞ�e�dt=RC þ f ðvsÞ: (4)

Denoting t¼ jdt, s¼Ndt, vj¼ v(t), and vj�Nþ1¼ vs

¼ v(t� s), Eq. (4) reads

vjþ1 ¼ ½vj � f ðvj�Nþ1Þ�e�dt=RC þ f ðvj�Nþ1Þ: (5)

Substituting the expression for the nonlinear function f(v) it

results

vjþ1 ¼ vje
�dt=RC þ 1� e�dt=RCð Þ avj�Nþ1

1þ vn
j�Nþ1

: (6)

Equation (6) governs the discrete-time evolution of the

electronic circuit. It can be shown that the solutions of this

equation tend to the solutions of the original delay-

differential equation, Eq. (2), as dt tends to zero and N grows

to infinity while the delay time s¼Ndt is kept constant.

Starting with the equation for the dimensionless variable of

the MG model

dx

dt0
¼ RC

dx

dt
¼ RC lim

dt!0

xjþ1 � xj

dt

� �
; (7)

substituting the expression obtained in (6), we obtain

dx

dt0
¼ RC lim

N!1

xj

dt
e�

C
N � 1

� �
þ 1� e�

C
Nð Þ

dt

axj�Nþ1

1þ xn
j�Nþ1

" #
: (8)

Taking the limit, it results

dx

dt0
¼ �RCC

x tð Þ
s
þ RC

C
s

a
x t� sð Þ

1þ x t� sð Þn ; (9)

reorganizing this expression we obtain

dx

dt0
¼ �x t0ð Þ þ a

x t0 � Cð Þ
1þ x t0 � Cð Þn ; (10)

which is exactly the dimensionless continuous-time equa-

tion (2).

The agreement between the electronic implementation

and the discrete equation, Eq. (5), was checked comparing

the temporal series. To consider the worst situation, the

smallest possible value of the discretization (N¼ 396) was

considered. Clearly, here the most important aspect is to ana-

lyze the goodness of the approximation of the delayed term

f(vs) as a constant value in the interval (t, tþ dt) is, given the

specific characteristic time-scales of the electronic circuit.

IV. RESULTS AND DISCUSSION

A. Experiment-model comparison

Figure 3 displays two examples of temporal evolutions,

one is synthetic, obtained from simulations of Eq. (5), and the

other is empirical, recorded from the electronic circuit (the

initial conditions are as described in Sec. IV B). One can

notice that there is an excellent agreement experiments-simu-

lations: two coexisting solutions were found, both, in the sim-

ulations and in the electronic circuit, which are characterized

by the same alternation of peaks of different amplitudes.

In Figs. 4 and 5, several examples (empirical and numer-

ical, respectively) time-traces are shown. In these figures, the

parameter values of the electronic circuit or the numerical

simulations are kept constant while only the initial

conditions are varied. To check the quantitative agreement

between the experiment and simulations, we calculated the

cross-correlation functions. The values of the maxima, the

relevant quantity here, are in all the cases in the interval

(0.96, 1), revealing the excellent agreement.

Looking at the solutions of Figs. 4 and 5, we distinguish

that six are periodic, (a)–(f), and two are aperiodic, (g) and

(h). In the periodic time traces, the period (indicated with a

black line), is 4.1s and each period contains precisely 35

maxima. It is remarkable that neither the period, nor the

number of maxima per period, uniquely identify the solution.

In Sec. IV B, an algorithm designed to characterize these

solution is described.

Figures 6 and 7 display bifurcation diagrams and dem-

onstrate that the qualitative agreement is very good for a

wide range of normalized delays. These bifurcation diagrams

were obtained by plotting, after neglecting transients, the

maxima of time series, as a function of C¼ s/RC. In the

experimental setup, C was varied by changing R (i.e., C, N,

and dt were kept fixed).

Looking at the bifurcation diagrams, we observe, in

addition to the familiar period-doubling and chaotic

branches, singles branches that appear or disappear at certain

C values can be appreciated. These isolated branches are

typical of delay-differential equations.24 We observe here

that they appear at the same value of C, both, in the experi-

mental and in the numerical diagram. We can also note that,

for the highest C values, the numerical and experimental

FIG. 3. Comparison between simulations using the discretized solution Eq.

(5) (left column) and experimental results obtained from the electronic cir-

cuit (right column). The top and bottom rows display coexisting solutions

obtained from different initial functions. The parameter values are: n¼ 4,

a¼ 4.9, C¼ s/RC¼ 15.7 and N¼ 396.

043112-4 Amil et al. Chaos 25, 043112 (2015)
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diagrams show a few small differences; this can be expected

because the approximation used to derive Eq. (5) [i.e., f(vs)

is constant in (t, tþ dt)], worsens.

To complete the characterization of the model, in Fig. 8

we plot the parameter space as a function of the delay (pro-

portional to C) and the inverse of the decay rate. In color

FIG. 4. Periodic and aperiodic experimental time series for the same parame-

ter values and different IFs revealing the multistability of the model. The pe-

riod, if exists, is indicated with a black line. The parameters of the electronic

circuit are n¼ 4, a¼ 3.71, C¼ 40. The initial function is defined in Eq. (12).

FIG. 5. Continuous time simulations results corresponding to the experimen-

tal series shown in Fig. 4. A variable step-size Runge-Kutta (4th–5th) was

used integrate the equations. The interpolation of intermediate point was

obtained using a cubic spline.

043112-5 Amil et al. Chaos 25, 043112 (2015)
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code it is indicated the number of peaks per period of the

solution after transient. The initial condition, for this plot, is

obtained, at each point, by taking the final values of the pre-

vious point. Larger delays result in solutions of increasing

number of peaks per period organized in peculiar structures

similar to those reported by Junges and Gallas.24 This figure

evidences the richness of the model.

B. Analysis of multistability

Next, we investigate the influence of the initial condi-

tions. As it is shown in Sec. IV A (see Figs. 3–7), multistabil-

ity is manifested in a wide range of parameter. In order to

identify parameter regions where multi-stability occurs, we

developed an algorithm for time-series analysis that allows

to unambiguously distinguish similar waveforms.

The analysis algorithm is based in a symbolic represen-

tation of a time-series and allows to label the different

periodic solutions. Two symbols were used, which corre-

spond to highest peaks, and to 2nd highest peaks. analyzed).

Once the symbolic string was generated, the algorithm

searched for periodicity, and if found, the time-series was

labeled with the symbolic string, written in a unique way

under cyclic permutations. For example, the symbolic strings

AAABBBAAABBB and BBBAAABBBAAA both represent the

same periodic solution, which has three consecutive high

maxima followed by three consecutive smaller maxima.

labeling different solutions allows to distinguish among solu-

tions with the same number of peaks per period. The algo-

rithm can be extended to analyze more complex waveforms.

To investigate multi-stability one needs to consider dif-

ferent initial functions, v(t� s)¼F0(t) with t � (�s, 0).

Here, we consider two families with two parameters each

F0 tð Þ ¼ v2 � v1ð Þ
t

s
þ v2; (11)

and

F0 tð Þ ¼ 1

40
sin

7pt

2s
þ /

� �
sin

7pt

s
þ 2/

� �
þ voff ; (12)

where (v1, v2) and (/; voff) univocally determine F0 in the

interval (�s, 0).

Then, for each pair of values, (v1, v2) or (/; voff), a tran-

sient time is neglected (about 5000s in the simulations and

1000s in the experiments) and time series of length 200s
(simulations) or 100s (experiments) are recorded. Their peri-

odicity is analyzed with the symbolic algorithm and the solu-

tions are plotted in the (v1, v2) or (/; voff) plane. If the MG

system is only two-dimensional these plots would identify

the basins of attraction of the different solutions; however,

the MG system is a delayed system and thus, these plots only

classify the different solutions obtained in terms of the two

parameters that determine the initial function.

The results are presented in Fig. 9 (where F0 is given by

Eq. (11) and the parameters of the MG model and of the

electronic circuit are as in Fig. 3) and in Fig. 10 (where F0 is

given by Eq. (12) and the parameters are as in Fig. 4). In the

first case, there is bistability while in the second case, six

different periodic solutions were identified (in Fig. 10, the

black regions represent initial functions that result in

aperiodic trajectories). Experiments and simulations are

contrasted, and again a very good agreement is found.

Moreover, we computed the frequency of occurrence of the

different coexisting solutions and again a very good agree-

ment was found (not shown). Therefore, our study indicates

that, at least for the model parameters considered here, the

FIG. 6. Bifurcation diagram displaying the maxima of time series, as a func-

tion of the normalized delay, C¼ s/RC¼Ndt/RC, obtained from simulations

of Eq. (6). a¼ 3.73, other parameters are as in Fig. 3.

FIG. 7. Empirical bifurcation diagram. The electronic circuit delay line has

N¼ 1194 C¼ 1.0 lF capacitors. To vary C¼ s/RC¼Ndt/RC within the

same range as Fig. 6, R was varied in the range 0.5 kX–1.0 kX and a¼ 3.73,

as in Fig. 6.

FIG. 8. Parameter space as a function of the delay and the inverse of the

decay rate obtained from numerical simulations of the discrete equation.

The number of maxima per period is indicated using the code shown in color

bar. Parameter values: n¼ 4, and N¼ 396.
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electronic circuit reproduces the main features of the MG

system (the shape of the waveforms, the bifurcation dia-

grams, and the maps of bistable and multistable solutions)

and thus, it could be used to investigate other issues, for

example, noise-induced switching, or how multi-stability

affects synchronization.

C. Discussion

Analytic calculations in time-delayed equations are in

general very complex (except in the limit of small delay),

and they are beyond the scope of the present work that

focuses on an experimental investigation of co-existing time-

dependent solutions.

We observe in Figs. 4 and 5 the presence of solutions

sharing a common period but the different alternations of

elementary peaks. These solutions define a family of func-

tions. In the color maps of Figs. 9 and 10 the basin of attrac-

tion of two families of these functions are shown. However,

it is neither possible to determine a priori the stability of the

solutions nor to exclude the existence of other families of

periodic or aperiodic solutions.

An interesting observation is that given a solution corre-

sponding to a given delay, this solution is also a solution for

other values of the delay. Assuming that, for a set of control

parameters, n, C, and a, there exists a periodic solution of

period T: s(t). Then, the solution s(t) is also a solution (not

necessarily stable) of an infinite set of control parameters: n,

Ck¼Cþ kT, and a, where k is an arbitrary integer. Indeed, if

s(t) is a solution, it verifies Eq. (2)

ds

dt
tð Þ ¼ a

s t� Cð Þ
1þ s t� Cð Þn � s tð Þ (13)

and thanks to the periodicity

ds

dt
tð Þ ¼ a

s t� kT � Cð Þ
1þ s t� kT � Cð Þn � s tð Þ: (14)

By setting Ck¼Cþ kT, the previous equation becomes

ds

dt
tð Þ ¼ a

s t� Ckð Þ
1þ s t� Ckð Þn � s tð Þ; (15)

which is the dimensionless equation for the parameters n, Ck,

and a. Then, the solution s(t) is a solution for an infinite set

of delay values.

In the discrete-time equation, we can make C tend to

infinity and make some useful insight to the behavior of the

system for large delay times. Using the dimensionless ver-

sion of discrete-time evolution equation, Eq. (5),

FIG. 9. Map of parameters (v1, v2) [that define the initial function given by

Eq. (11)], which evolve into one of two possible periodic solutions, a in light

grey (blue online) or b in dark gray (green online). The corresponding wave-

forms are displayed in Fig. 3. The top panel displays the analysis of simu-

lated time-series while the bottom panel, of empirical data. Parameters are

as in Fig. 3.

FIG. 10. As Fig. 9, but now the initial function is defined by Eq. (12), and

the parameters are as in Fig. 4. The top panel displays the analysis of simu-

lated time-series while the bottom panel, of empirical data. In both cases, six

different periodic waveforms were identified, which are indicated in the

color bar with letters a, b, c, d, e, f corresponding to the panels in Fig. 4.

Aperiodic behavior is indicated in black. The labels g and h in the map

locate the initial conditions that generate trajectories as those displayed in

Fig. 4, panels (g) and (f).
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vjþ1 ¼ vje
�C

N þ 1� e�
C
N

� �
a

vj�Nþ1

1þ vn
j�Nþ1

; (16)

when making C tend to infinity the equation becomes

vjþ1 ¼ a
vj�Nþ1

1þ vn
j�Nþ1

; (17)

which could be seen as N independent maps of the form

vjþ1 ¼ a
vj

1þ vn
j

: (18)

These maps exhibit fixed point or oscillatory dynamics

depending on the value of the parameter a. If a is large

enough, the complete solutions consists of N independent

maps and, then, corresponds to the case of extreme

multistability.

On the other side, if we also consider the continuous

limit, N tends to infinity, we recover Eq. (2). Therefore, we

conclude that for large delays, the continuous model presents

an increasing number of different coexisting solutions.

V. CONCLUSION

Multistability in the Mackey-Glass (MG) model was

studied experimentally, by employing the electronic imple-

mentation proposed in Ref. 33, and numerically, by using a

discrete-time equation that approximates the exact solutions

of the MG model and in particular, models the delay line in

the electronic circuit, which is implemented via a linear array

of capacitors (a Bucket Brigade Device, BBD). We have

found an excellent agreement between observations of the

electronic circuit and the simulations of the discrete-time

MG model.

In wide parameter regions, different periodic or aperi-

odic solutions, but with similar waveforms, coexist. In this

work, these solutions, exhibiting the alternation of peaks of

different amplitudes, were distinguished by means of a sym-

bolic algorithm. A relevant consequence is that, in contrast

to other systems in which it is sufficient to count the number

of peaks per period (see, for example, Refs. 37 and 38), here,

it is necessary to consider the ordering of the peaks to iden-

tify the solutions.

The system’s phase-space was explored by varying the

parameter values of two families of initial functions. The

maps of initial conditions that result in different periodic

solutions were found to exhibit complex structures, which

are not uncommon in delayed systems.39 A full characteriza-

tion of the complex organization of these solutions in the

system’s phase space is an open issue which deserves further

research.

The electronic circuit investigated here can be a useful

experimental tool for further understanding the bifurcation

scenario and the complex solutions of the MG model, and

can also be used as “toy model,” to study generic features

of time-delayed systems, such as deterministic high-

dimensional attractors, synchronization in the presence of

multistability, or the complex stochastic dynamics that can

emerge due to the interplay of multistability, noise, and

delay.
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