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Abstract. Antiperiodic oscillations forming infinite cascades of spirals
were recently found experimentally and numerically in the control para-
meter space of an autonomous electronic circuit. They were discovered
while recording one specific voltage of the circuit. Here, we show that
such regular self-organization may be measured in any of the four vari-
ables of the circuit. Although the relative size of individual phases, their
boundaries and the number of peaks of each characteristic oscillation
depends on the physical quantity used to record them, the global struc-
tural organization of the complex phase diagrams is an invariant of the
circuit. Tunable families of antiperiodic oscillations cast fresh light on
new intricate behavior of nonlinear systems and open the possibility of
studying hitherto unobserved phenomena.

1 Introduction

The study of regular patterns in the control parameter space of nonlinear systems
of all sorts is a topic attracting increasing attention in several scientific disciplines
in recent years [1–33]. One amazing class of regular patterns, certain spiral-shaped
stability phases, arises from the self-organization of antiperiodic oscillations, namely
from oscillations x(t) that obey the relation x(t + T ) = −x(t) for all t, where T
is called the antiperiod of x(t). Trivial examples are the trigonometric x(t) = sin t
and cos t functions. Recently, infinite hierarchies of antiperiodic oscillations display-
ing waveforms with an ever increasing complexity were found experimentally and
numerically to be generated profusely by a certain electronic circuit (Fig. 1) governed
by four independent variables [6,7]. Although antiperiodic oscillations were detected
in all four variables of the circuit, all spirals reported earlier were determined for
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Fig. 1. Schematic representation of the autonomous circuit which generates antiperiodic
oscillations. The right column gives the v-i characteristic functions iR(v1) and iG(v2) of
the nonlinear elements. Top: the v × i characteristic of the nonlinear resistor R. Bottom:
the v × i characteristic of the negative conductance G. Both characteristics are defined by
odd-symmetric functions.

just one of the variables [6,7]. Therefore, it is natural to inquire whether or not the
regularities found for one of the variables are also borne out for any arbitrary dynam-
ical variable of the circuit. This is the Leitmotiv of the present work.
Our present aim is to report extensive numerical calculations for all four vari-

ables of the circuit. We show that the relative size of individual stability phases, their
boundaries, and the number of peaks of their characteristic oscillations depends on the
physical quantity used to record them. However, despite the differences mentioned,
the global structural organization of the complex phase diagrams remains remarkably
invariant to these features. Before proceeding, it is perhaps important to mention that
there is no analytical method capable of anticipating size and shape of stability phases
arising from complex oscillations which can only be found numerically. We find the
complexification of all currents and voltages to be mediated by an apparently infinite
sequence of antiperiodic oscillations which emerge organized in regular spiral phases
in the control parameter space.
The next Section describes the circuit used. Section 3 presents our main findings,

namely how the set of stable oscillations gets self-organized as function of control
parameters. Section 4 summarizes our findings.

2 The autonomous electronic circuit

The circuit investigated here is shown in Fig. 1. Briefly, it is an autonomous circuit
with two active elements, a nonlinear resistor R and a negative conductance G. The
characteristic v-i response curves of the active elements are piecewise-linear odd-
symmetric functions also shown in Fig. 1. The circuit is governed by the equations:

C1
dv1

dt
= i1 − iR(v1), C2

dv2

dt
= −i1 − i2 − iG(v2),

L1
di1

dt
= v2 − v1 − i1R1, L2

di2

dt
= v2 − i2R2,

(1)

where v1 (resp. v2) represent the voltage across the capacitance C1 (C2) and i1 (i2)
is the current through the inductance L1 (L2).
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Table 1. Reference parameters used in the simulations.

L1 = 9.8mH E1p = 2.5V Ga = −0.7mS
L2 = 20.6mH E2p = 11.0V Gb = −0.5mS
C1 = 6nF Eb = 7.5V Gaa = −0.5mS
C2 = 12nF Gc = 3.35mS Gbb = 0.5mS

The v-i characteristics of the nonlinear elements are represented by the following
odd-symmetric expressions

iR(v1) = Gcv1 + (Ga −Gb)
(|v1 + E1p| − |v1 − E1p|

)
/2

+(Gb −Gc)
(|v1 + E2p| − |v1 − E2p|

)
/2, (2)

iG(v2) = Gbbv2 + (Gaa −Gbb)
(|v2 + Eb| − |v2 − Eb|

)
/2. (3)

The different parameters are functions of the electronic components. Thus, Eb de-
pends of the output voltage swing, Vsat, of the operational amplifier, and of its input
voltage, Vcc. The slopes Ga and Gb of R depend of the non-zero forward voltage,
Vγ , of the diodes which we model as an ideal diode plus a battery. Unless otherwise
stated, the values of the several reactances used are the ones summarized in Table 1.
Our main goal here is to report details about the unfolding of cascades of antiperiodic
patterns discovered in the circuit.

3 Stability diagrams

To locate promising parameter windows to perform experiments, we first computed
detailed stability diagrams for our circuit. To this end, Eqs. (1) were integrated sys-
tematically over grids of equally spaced parameters using a standard Runge-Kutta
fourth-order algorithm with fixed time step h=10−6 s. Such high-resolution com-
putations are quite demanding and were performed on a Altix cluster of 1536 high-
performance processors running during a period of several weeks. Computations were
started always from a fixed initial condition v1=8V, v2= − 5V, i1= − 1 mA,
i2=3mA. The first τ � 20 × 105 integration steps were discarded as transient and
the subsequent 20 × τ steps were used to calculate the Lyapunov spectrum. As it is
known, positive exponents indicate chaotic oscillations while a negative largest expo-
nent is a signature of periodic oscillations. The chaotic or periodic nature of solutions
was also determined in an independent way, by computing the so-called isospike
diagrams, diagrams recording the number of peaks (local maxima) within one period
of the oscillations. Such diagrams proved useful in recent investigations of models
of excitable systems [20] and mixed-mode oscillations [21]. To produce them, sub-
sequently to the computation of the Lyapunov spectrum, numerical integration was
continued for an additional 20 × τ time-steps during which we recorded extrema
(maxima and minima) of a given variable of interest together with the instant when
they occur. For each time-series we recorded up to 800 extrema, checking whether
pulses repeated or not and counting the number of peaks within one period of the
periodic oscillations.
Overwide parameter ranges, Fig. 2 presents stability diagrams which discriminate

the chaotic or periodic nature of the oscillations in the R2×R1 parameter. This figure
shows isospike diagrams [20,21] illustrating in colors the distribution of the number
of peaks present in one period of v2. As indicated by the colorbar, we use a palette
with 17 colors to represent the number of peaks found in one period of the periodic
oscillations. Oscillations containing a higher number of peaks are plotted “recycling”
these 17 basic colors modulo 17, namely by assigning to higher periods the color-index
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Fig. 2. (a) Global view of a spiral cascade formed by antiperiodic oscillations. (b) Details
of the regular organization near the focal point. The focal hub is located inside the white
box, where the yellow and blue boxes meet. (c) Magnification around the focal hub. Note
the strong compression of the periodic phases embedded in the wide background of chaos
(represented in black). (d) Details of the sequence of odd shrimps and their legs. (e) Details
of the sequence of even shrimps and legs. Each individual panel displays the analysis of
2400× 2400 = 5.76× 106 parameter points. Units of R1 and R2 are Ω.

given by the remainder of the integer division of their number of peaks in one period
by 17. Multiples of 17 are given the index 17. Of course, the number 17 plays no role,
the sequence of colors having been chosen so as to maximize contrast between phase
boundaries. Black is used to represent “chaos” (i.e. lack of numerically detectable
periodicity). From these figures one sees that the number of peaks contained in one
period of v2(t) increases steadily by 2 after every turn towards the focal hub.
Figure 2 describes in details how the stable oscillations organize themselves and

pave with a multitude of colors the control space near to the focal hub. This fig-
ure records two important informations, namely (i) how the number of peaks vary
along spirals, and (ii) the precise location where the number of peaks changes. How
they change is discussed below (Fig. 6). Figure 2 shows that the peaks continue to
increase by 2 after every turn towards the focal point. From Figs. 2d and e it is
possible to recognize several additional secondary spirals sandwiched between every
turn of the main spiral. From additional magnifications (not shown here) it is possi-
ble to see that there is an apparently unbounded hierarchy of secondary spirals that
get thiner and thiner as one approaches more and more the focal hub. In the lower-
left quarter of Fig. 2b one sees that the edges, or legs, composing the main spiral
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Fig. 3. Two complementary ways of characterizing the stability of the circuit in the C1×R1
control plane: (a)–(f) Lyapunov diagrams, and (g)–(i) isospike diagrams. (a) Global view
of the plane, white and pink boxes correspond to the regions plotted in panels (b) and (c).
Successive magnifications shown in panels (d)–(f) and (g)–(i) are indicated in the light-
blue, white and pink boxes of panel (c). Note the remarkable structural similarity with the
structural organization seen in the control plane R2 × R1 of Fig. 2. All panels display the
number of spikes in one period of v2(t). Here L1 = 12 mH and R2 = 140Ω. Units of R1 and
C1 are Ω and nF. Each panel shows 600× 600 parameter points.

display a clear angularity that, however, becomes smoother and smoother near the
hub. We believe that these non-uniformities have to do with the high-dimensionality
of the parameter hypersurface defined by the flow. Note that the parameters fixed
in Table 1, motivated by experiments, do not produce necessarily optimal sections of
this hypersurface, capable of displaying the most symmetric spirals. An optimization
of parameters would consume a prohibitively large amount of computer time and,
therefore, we have not attempted to do it, selecting for simplicity standard parameter
values [6,7]. Apart from the R2 × R1 plane, spirals were also found in other planes
like, e.g. C1 × C2 and C1 × R1. Figure 3 shows detailed stability diagrams for this
latter control plane. Despite depicting different sections of the parameter space, the
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Table 2. Coordinates and the evolution of the number of peaks pv1 , pv2 , pi1 , pi2 of voltages
v1(t), v2(t) and currents i1, i2 when moving towards to the focal point of the spiral. The
values of (R2, R1) are located near shrimp heads [28,29] along the spiral. T gives the period
of the oscillations.

R2(Ω) R1(Ω) T (ms) pv1 pv2 pi1 pi2
s0 92 2137 0.438 5 5 7 3
s1 5.6 2823 0.504 5 5 7 5
s2 102 2186 0.631 7 7 9 5
s3 64 2658 0.696 7 7 9 7
s4 111 2234 0.809 9 9 11 7
s5 87 2584 0.888 9 9 11 9
s6 122 2273 0.991 11 11 13 9
s7 99.8 2538.5 1.082 11 11 13 11
s8 130.3 2303.5 1.179 13 13 15 11
s9 108.5 2508.5 1.274 13 13 15 13
s10 138 2330.0 1.366 15 15 17 13
s11 114 2487 1.464 15 15 17 15
s12 141 2352.5 1.558 17 17 19 15
s13 118.3 2472.5 1.652 17 17 19 17
s14 139.4 2378.5 1.751 19 19 21 17
s15 121 2461.3 1.842 19 19 21 19
s16 136.2 2398 1.944 21 21 23 19
s17 123 2453.4 2.032 21 21 23 21

spirals in Figs. 2 and 3 display a remarkable structural similarity that persists at all
levels of magnification shown.
What happens with the periodicity of the oscillatory patterns when one moves

along the spiral towards the focal hub? In other words, how do periodic patterns
evolve along the spiral? To check this, for the parameter points defined in Table 2
below, we computed the temporal evolution of currents and voltages for a few para-
meters s0, s1, · · · , s17 located at the turning points of the spiral, indicated by the dots
in Figs. 2a–e. The remarkable outcome of such computations is shown in Fig. 4 which
illustrates several things. First, it shows that the widest periodic phases composing
the spiral start with oscillations having an odd number of spikes. Second, antiperi-
odic wave patterns evolve continuously when parameters are tuned along the spiral.
Third, the waveform displays the same generic form when circling towards the focal
hub, while the number of peaks increases steadily by 2 after each turn around the
spiral. Four, the temporal evolution of all periodic voltages and currents with an odd
number of spikes displays a clear antiperiodicity characterized by the relation

x

(
t+
T

2

)
= −x(t), (4)

where x represents any of the four variables v1, v2, i1, i2 and T is the oscillation period.
Of course, Eq. (4) is precisely the signature of the antiperiodic oscillations.

An additional interesting feature of the temporal evolutions in Fig. 4 is that
the amplitudes of v2 recorded at the turning points s0, s2, s4 are smaller than those
recorded at s1, s3, s5. The same is true for i2. In other words, not only the period but
also the amplitude of the oscillations vary while cycling towards the hub. Note that
an antiperiodic function with period T is necessarily a periodic function with period
2T . Furthermore, note that symmetry forbids antiperiodicity to exist for oscillations
with an even number of spikes.
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Fig. 4. The first six of the infinite sequence of antiperiodic waveforms observed for
v1, v2, i1, i2 when varying two parameters simultaneously while cycling towards the focal
hub. Such parameters are recorded as points s0, s1, s2, . . . s5 in Table 2. Voltages are
measured in V and currents in mA. The time scales shown apply to all panels.
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Fig. 5. Experimental waveforms of v1(t), v2(t), i1(t), and i2(t) when varying R1 while
keeping R2 = 118Ω fixed. The values of R1 are, from top to bottom R1 = 2167Ω, R1 =
2199Ω, R1 = 2291Ω, R1 = 2325Ω. Intensity is given in arbitrary units and voltages in Volts.
Other parameter values: L1 = 21.4mH, L2 = 9.8mH, C1 = 5.86 nF, and C2 = 11.8 nF.

Figure 5 depicts experimental results which mimic the unfolding seen in Fig. 4.
However, Fig. 5 was obtained while varying just a single control parameter across the
spiral and illustrates the fact that variation of a single is enough to discern the rich
peak substructure present in the four waveforms. In Fig. 5 one can recognize that
the experimental signals corresponding to i1(t) vary distinctly than the signals in the
other three columns. This difference is associate with the fact that the number of
peaks in i1(t) is far more sensitive to noise than the other variables. This is also true
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Fig. 6. Changes in the number of spikes occur by local deformations of two peaks,
simultaneously. Waveform recorded for the parameters (R2, R1) corresponding to the dots
in the isospike diagram, p1 = (59, 2215), p2 = (63.2, 2187), p3 = (86, 2253), p4 = (92, 2210),
p5 = (103.5, 2280), p6 = (106, 2246), showing the waveform evolution nearby the transitions
from 3 to 5, from 5 to 7 and from 7 to 9 peaks. The arrows locate the precursors of new
peaks which emerge through waveform deformations (see text). Units of R1 and R2 are Ω.
The leftmost panel shows 1200× 1200 parameter points.

for the numerical simulations of v1(t) and i1(t) which, however, due to the higher
precision involved, allow peaks to be more accurately computed, in the sense that
they are less affected by instrumental imprecisions and can be followed with greater
precision. In all figures, the experimental signals corroborate the antiperiodic nature
of the oscillations.
From Table 2 one can follow more easily the systematics of the evolution of the

number of peaks both for voltages and currents. As it is clear from the Table, the
number of peaks of the variables are not always equal although they grow in a regular
and predictable way. Comparing the situation between s0 and s17 one sees that, for
v2, the number of peaks changes from 5 to 21 while the period increases from 0.438
to 2.032ms, giving 21/5 = 4.2 and 2.032/0.438 � 4.6, meaning that the growth of the
period is faster than the growth of the number of peaks of the oscillations. The co-
ordinates (R2, R1) provide the location of the several s0, s1, s2, . . . , s17, some of them
marked by dots or labels in the figures above. Such points give the approximate loca-
tion of the intersection of loci of exponent minima and mimic somewhat the known
doubly superstable shrimp heads which are properly defined only for one-dimensional
maps [29]. Table 2 also shows the period T of voltages and currents. While the period
accumulates to a fixed value when moving towards the focal point, the number of
peaks contained in a period seems to grow without bound.
The mechanism responsible for adding peaks along the spiral can be investigated

with the help of Fig. 6. In this figure the time evolutions computed immediately
before and after changes of the number of peaks for three selected boundaries are
represented. The pair of arrows mark the onset of “deformations” of the waveforms
that will end up turning into a pair of new peaks. Thus the complexification of the
wave patterns arise from deformations analogous to the ones described recently for
the prototypical feedback system introduced by Mackey-Glass [13] and for the Lang-
Kobayashi model of semiconductor lasers with delayed feedback [14]. These systems,
however, do not contain any spirals in their control parameter space and, of course, do
not show antiperiodicity. Note that the key for the existence of antiperiodicity in the
circuit is the odd number of spikes of the oscillations along the spiral. Furthermore,
in order for antiperiodicty to subsists indefinitely on the spirals, we need a pair of
wave pattern deformations to occur simultaneously.



Advanced Computational and Experimental Techniques in Nonlinear Dynamics 2865

0 200R2
2000

2900

R1

(a)

v1

0 200R2
2000

2900

R1

(b)

v2

0 200R2
2000

2900

R1

(c)

i1

0 200R2
2000

2900

R1

(d)

i2

Fig. 7. The size and the boundaries of periodic phases depend on the variable used to
count peaks. Isospike diagrams obtained by counting the number of peaks in one period of
(a) v1(t), (b) v2(t), (c) i1(t), (d) i2(t). Table 2 collects the number of peaks for all these
variables. The color coding is the same as used in previous figures. Units of R1 and R2 are
Ω. Each panel records the analysis of 1200× 1200 = 1.44× 106 parameter points.

So far, our description of the structure of the stability diagrams obtained by
counting the number of peaks was based on the study of v2, the voltage across the
capacitance C2 in Fig. 1. What happens when one considers the other three variables
to count peaks? Do the peaks of all four variables evolve in unison when parameters
change? The answer is given in Fig. 7: each variable produces quite different sub-
divisions of the periodic phases. Every variable yields sub-divisions having their own
specific idiosyncrasies although the overall trend remains the same. The number of
peaks may change after a full turn along the spiral or not. Furthermore, the location
where changes occur varies for each variable. An attempt to uncover the systematics
behind such changes is too demanding and would only make sense after solving the
optimization problem mentioned in the previous paragraph.
As already mentioned, symmetry considerations prevent oscillations with an even

number of spikes of being antiperiodic. Thus, although regions of oscillations with an
odd number k of spikes display antiperiodicity, the infinite k×2n doubling cascades is-
suing from them must necessarily display periodic waveforms. Note the peak-doubling
cascades that are clearly visible in the lower right corner of the panels in Fig. 7.

4 Conclusions and outlook

We reported a detailed investigation of detectability of spiral stability phases for a
nonlinear circuit with two active components. Our results show that spiral phases and
regularities are accessible by measuring the dynamics of any of the four variables of
the circuit. The relative size of the individual stability phases, their boundaries, and
the number of peaks of their characteristic oscillations depends on the specific physical
quantity used to record them (see Fig. 7). But despite these differences, the global
structural organization of the phase diagrams is remarkably invariant for the circuit.
Antiperiodic oscillatory wave patterns become more and more complex through a
regular spike-adding mechanism involving continuous waveform deformations, not
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via period-doubling or other of the familiar mechanisms. Individual stability phases
are characterized by specific waveforms (Fig. 4), which evolve continuously along the
spiral. While the number of peaks of the periodic oscillations grows indefinitely, their
period seems to accumulate to certain values that can be determined if needed.
An interesting open problem is that, while peak-adding cascades (which happen

along the spirals) preserve the initial symmetry of the wave forms, in sharp contrast,
peak-doubling cascades (happening in the transversal direction) need first to break
the initial symmetry in order to start to unfold by doubling. Thus, finding the right
conditions for adding and doubling cascades of antiperiodic forms seems a nontrivial
issue that deserves to be investigated.
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