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Abstract

The turbulent advection of a reacting substance is considered. The existence of two
different states, one smooth and the other filamental, is discussed. The transition
between these states is characterized in terms of the competition of the stretching
and folding mechanism of the turbulent field and the tendency of the scalar field to
relax to the non-homogeneous steady state.
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Mixing in fluids has attracted much interest in recent years and particular
considerable progress has been made concerning chaotic advection [1–3]. A
remarkable fact recently pointed out is the existence of a smooth-filamental
transition of active tracers stirred by chaotic advection [4]. Here, we are inter-
ested in the existence of a similar transition when the advection is produced
by a turbulent field. As a relevant example of this kind of situation we consider
the model proposed by Abraham concerning plankton dynamics [5].

We consider here the turbulent advection of a reacting scalar field C(~r, t).
The scalar field is assumed to be passive, i.e. it does not affect the turbulent
velocity field and its dynamics to be stable, that is, in the absence of the
advecting field the system relaxes to a non-homogeneous steady state C0(~r).
The reaction-advection equation for the scalar field C(~r, t) reads

∂C

∂t
+ ~v(~r, t) · ~∇C = α(C0(~r) − C), (1)
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where ~v(~r, t) denotes an incompressible (∇·~v = 0) two-dimensional turbulent
field and α is the relaxational ratio to the non-homogeneous steady state
representing an inhomogeneous forcing at large scales which may give account
of upwelling, solar radiation, etc. In this presentation we have chosen a simple
form for C0(~r) given C0(x, y) = 1+A sin(2πxnl/L) sin(2πynl/L) where A and
nl are constants and x, y ∈ (0, L). In our model we do not include a molecular
diffusion term. The inclusion of a small molecular diffusivity in the equation
of motion for the scalar field tends to smooth out inhomogeneities at scales
smaller than the diffusion length scale.

The turbulent field is generated in a kinematic approach following a stochastic
method based on a generalized Langevin equation [6]. Following this method,
the physical parameters of the velocity field, the intensity u2

0, the integral
length l0, the correlation time t0, and the energy spectrum E(k) can be arbi-
trarily chosen. In this presentation we consider a geophysical two-dimensional
spectrum given by

E(k) ∝ k3
[

1 + λ2k2
]

−3
. (2)

This spectrum follows the widely accepted law of potential decay of the form
∼ k−3 within a range of scales over which the enstrophy cascades towards
higher wavenumbers [7,8]. The parameter λ, related to the maximum value of
E(k) introduces a typical length scale in the spectrum.

Concerning the numerical integration of the reaction-advection equation (1)
we use the two-step Lax-Wendroff method with a small time step to ensure
the stability. The dynamics of the turbulent field is simulated in Fourier space
with periodic boundary conditions in both dimensions. A detailed presentation
of the algorithm implemented to simulate turbulent flows can be found in [6].

Let us calculate the typical growth rate of the distance between two initially
very close particles in the turbulent flow. We know from previous studies
that the separation dynamics has three stages. For very short times the parti-
cles are moving in approximate straight lines, at intermediate times enhanced
dispersion following Richardson’s law applies, and, finally, for large times the
particles become independent and diffusion prevails [10]. For short times where
the separation is small compared with the characteristic length, l0, the sep-
aration δ~̂r is given by |δ~̂r(t)| ∼ est|δ~̂r(0)| where s(~r, t) is the local stretching
rate. Actually, at a given point there are expanding and contracting directions,
and if the initial conditions are along the contracting (expanding) direction
the particles will get closer (farther) following exp(−st) (exp(st)), so that s
defines a sort of local Lyapunov exponent. The stretching rate s can be re-
lated to the physical parameters of the velocity field. After averaging it can
be shown that s ∝ u0/l0 where the proportionality constant depends on the
details of the spectrum employed [11].
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Following Refs. [4,9] we adopt a Lagrangian perspective to describe the tem-
poral evolution of the scalar field by means of ordinary differential equations.
In such a perspective the time dependent position of a marked fluid particle is
denoted by ~̂r(t). The Lagrangian version of the equation (1) gives the dynam-
ics of the scalar fields within each parcel of fluid. In particular, the equation
for the carrying capacity results

dĈ

dt
= α(C0(~r) − Ĉ) (3)

To investigate the spatial structure of the scalar field we calculate the dif-
ference δC = C(~r + δ~r, t) − C(~r, t). Expanding Eq. (3) in the vicinity of a
reference orbit and integrating [4] we obtain

δC(t) = δC(0)e−αt +

t
∫

0

α∇rC · δ~r(t′)eα(t′−t)dt′. (4)

This equation can be integrated knowing the separation of the particles at
previous times, δ~̂r(t′) (0 < t′ < t). In consequence, using Eq. (4) one can
obtain the directional derivative along the direction ~n = δ~r/|δ~r|

δC(t)

|δ~r(t)|
= δC(0)e(s−α)t +

t
∫

0

α∇rC · ~n e(s−α)(t−t
′)dt′ (5)

If s . α the derivative remains finite and we obtain a smooth pattern. On the
contrary, when s > α the derivative diverges in all the directions except in the
contracting direction, then, we obtain a filamental case.

In order to numerically verify the above reasoning let us consider two examples
corresponding respectively to the smooth and filamental cases. Starting from
a random initial condition the scalar field evolutionates according to Eq. (1).
In figure 1 we observe the spatio-temporal patterns representing the scalar
concentration in the stationary state (t = 40) for two values of α considered.
In the first case (s < α, left) we observe that the distribution is smooth. In
the second case, (s > α, right) the distribution is filamental.

In conclusion, we have studied the patterns formed by reacting scalar fields
under the influence of turbulent flows. We have analyzed a smooth-filamental
transition in terms of the competition between stretching and folding mecha-
nism of the velocity field and relaxation to the equilibrium of the scalar field.
The relevant parameters of the transition are the intensity and the character-
istic length of the velocity field and the relaxational ratio α. The role of the
molecular diffusivity is to smooth out small scales.

3



Fig. 1. Scalar concentration, for s = 0.34 and α = 0.25 (left) and α = 0.025 (right).
The parameter of the velocity field are u2

0 = 4.0, t0 = 5.6, and l0 = 8.0, N = 256,
and ∆ = 0.5.
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