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Particle dispersion in synthetic turbulent flows
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We study particle dispersion advected by a synthetic turbulent flow from a Lagrangian perspective and focus
on the two-particle and cluster dispersion by the flow. It has been recently reported that Richardson’s law for
the two-particle dispersion can stem from different dispersion mechanisms, and can be dominated by either
diffusive or ballistic events. The nature of the Richardson dispersion depends on the parameters of our flow and
is discussed in terms of the values of a persistence parameter expressing the relative importance of the two
above-mentioned mechanisms. We support this analysis by studying the distribution of interparticle distances,
the relative velocity correlation functions, as well as the relative trajectories.

PACS number~s!: 47.27.Qb, 47.27.Eq, 05.40.2a
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I. INTRODUCTION

The diffusion of a passive scalar convected by a stat
cally homogeneous and isotropic turbulent flow is a probl
of practical and fundamental interest in a great variety
contexts such as chemical reactions, mixing of fluids, a
spreading of pollutants. Many important results on turbul
diffusion are formulated in Lagrangian coordinates~see, for
example, Monin and Yaglom@1# and McComb@2#!, where
the coordinate frame is associated with a moving fluid e
ment. Since no simple connections between the Lagran
properties of the flow and the Eulerian properties of the
locity field ~measured in a laboratory frame! can be formu-
lated, much effort was invested into numerical modeling
flows with given Eulerian or Lagrangian characteristics.

Our approach is based on the use of a two-dimensio
synthetic turbulent flow with prescribed statistical properti
In our simulations we first generate the flow in all the syst
and then let the particles move advectively and without
ertia according to the velocity field. Our method of gene
tion of this field is based on a parallel update procedu
Although the algorithm spends much time with updating
whole-lattice velocity field~in comparison with the norma
schemes where the velocity field is calculated only at
particle positions!, it is suitable for the calculation of many
particle properties, i.e., for the discussion of cluster disp
sion, distance probability distributions, and some ot
position-dependent quantities that are going to be exam
in this paper.

Our main aim is to study the Lagrangian dispersion
particles advected by the previously mentioned synthetic
PRE 621063-651X/2000/62~4!/4997~9!/$15.00
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bulent flow, as described by the Richardson’s law. Since
initial work of L.F. Richardson@3#, a large amount of work
has been done@4–8# to understand the dispersion process
that lead to this behavior. It has been recently shown@9,10#
that different dynamical mechanisms can lead to the sa
Richardson’s law for the two-particle dispersion, so that su
dispersion can be dominated by either diffusive or ballis
events. In this paper we are going to support this idea w
the numerical results of particle dispersions under our s
thetic turbulence.

The paper is organized as follows: in Sec. II we introdu
the synthetic flow and the way we generate it. In Sec. III
focus on Richardson’s law and discuss the statistical na
of the process underlying this strongly enhanced dispers
We mainly investigate the effects of the flow parameters
the Richardson’s behavior. Although the dispersion law
the same, the modification of the turbulence parame
makes the dispersion mechanism more diffusionlike or m
ballistic, depending on the typical length, correlation tim
and mean-squared velocity of the flow. In Sec. IV we enfo
the previous ideas by looking at the trajectories, distribut
of interparticle distances, and relative velocity correlati
functions. Finally, Sec. V contains the main conclusions.

II. STOCHASTIC VELOCITY FIELDS

In this section we describe a numerical method to gen
ate a statistically homogeneous, isotropic, and station
two-dimensional velocity field, which could represent
‘‘synthetic’’ or ‘‘kinematic’’ turbulent flow with zero mean
and well-defined statistical properties. Our present pape
4997 ©2000 The American Physical Society
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entirely implemented in a two-dimensional space, howeve
is worth noting that it can be generalized to three dimensi
~3D! @11#. The two-dimensional space is chosen here
several reasons. First of all, it is chosen for the sake of s
plicity of the numerical simulations. Second, because
two-dimensional turbulence has considerable interest o
own. Such interest is connected with the experimental res
that are important both from the fundamental~see @12# or
more recently Paret and Tabeling,@13#! and from an applied
viewpoint ~see for example, Brown and Smith,@14#!.

The starting point of our two-dimensional simulations is
Langevin equation for a stream functionh(r ,t),

]h~r ,t !

]t
5n“2h~r ,t !1Q@l2

“

2#“• z~r ,t !, ~1!

wheren is the kinematic viscosity.Q@l2
“

2# denotes an op-
erator which controls the spatial correlations with a char
teristic lengthl and z(r ,t) is a Gaussian white-noise fiel
with zero mean value and whose covariance is given by

^z i~r1 ,t1!z j~r2 ,t2!&52e0nd~ t12t2!d~r12r2!d i j , ~2!

where the intensity of the noisee0 is a parameter of the
simulations. The Langevin equation can be formally in
grated to get the temporal evolution of the stream functi
Turning to a Fourier-space we see that Eq.~1! corresponds to
building up the field from the independent Fourier mod
and in this sense parallels to the kinematic simulations
lowing the ideas of Refs.@15–18#. Using Eq.~1! corresponds
to the change from an intrinsic randomness~associated to the
complex behavior resulting from the nonlinearity of th
Navier-Stokes equation! into a system of independent Fou
rier modes coupled to an external noise with prescribed
tistical characteristics.

The incompressible two-dimensional velocity field fo
lows then as

v~r ,t !5S 2
]h~r ,t !

]y
,
]h~r ,t !

]x D . ~3!

The main kinematic characteristics of the stochastic velo
field is the velocity correlation functionC(r ,s), which is
defined as

Ci j ~r ,s!5^v i~r1 ,t !v j~r2 ,t8!&. ~4!

As a consequence of the homogeneity, isotropy, and sta
arity of the flow, the correlation functions depend only
relative coordinatesr 5ur12r2u of two points and on the
time differences5ut2t8u. More specifically, we will employ
the radial correlation function defined by

C~r ,s!5 1
2 @Cxx~r ,s!1Cyy~r ,s!#. ~5!

The physical parameters characterizing the homogene
and isotropic turbulent flow are the following: the mea
square velocityu0 ~intensity! defined in a way that

u0
25C~0,0!5E

0

`

E~k!dk, ~6!
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whereE(k) is the energy spectrum of the flow, and the ch
acteristic~integral! time and length scales

t05
1

u0
2 E0

`

ds C~0,s!,

l 05
1

u0
2 E0

`

dr C~r ,0!. ~7!

These parameters can be obtained as functions of the i
parameters,n, e0, andl, for each specific form of the energ
spectrum. In particular the spectrum is directly related w
the Q operator. In what follows we consider the Ka´rmán-
Obukhov ~KO! spectrum@19,20#, which was introduced to
study Kolgomorov turbulence and parametrizes theE(k)
function in the following way:

E~k!}k3F11
k2

k0
2G27/3

. ~8!

This spectrum follows the widely accepted Kolmogoro
Obukhov power lawE(k);k25/3 for the inertial range (k
.k0) of well-developed homogeneous and isotropic turb
lent flow. According to this energy spectrum the choice
the Q operator is@11#

Q@l2
“

2#5~12l2
“

2!27/6, ~9!

wherel5(9/5)1/2k0
21. In this case we derive forC(r ,s) the

following expression:

C~r ,s!5
e0

4p E
0

`

dk k3J0~kr !~11l2k2!27/3exp~2nk2s!.

~10!

Equation~10! shows that the lifetime of the Fourier compo
nents of our flow behaves according tot}k22, a signature
of a diffusive process supposed by a Langevin dynam
Thus, the lifetime of a structure of sizeL grows proportion-
ally to t}L2 ~as typical, say for the turbulent velocity field
in the viscous range! and does not follow the Kolmogorov
scaling supposingt}L2/3. Therefore, the larger structures o
our flow are more persistent that ones in real turbulen
However this is not essential for the discussion of the disp
sion properties of the flow since, as demonstrated, they
the same as those that follow from Kolmogorov’s univers
ity class.

The results for the three basic physical parameters,u0
2, t0,

and l 0, in terms of the simulation parameters,e0 , l, andn,
are then

u0
25

9e0

32pl4
,

t05
l2

3n
,

l 05l
G~1/2!G~5/6!

2G~1/3!
. ~11!
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A detailed presentation of the way the algorithm just p
posed is implemented to simulate turbulent flows can
found in Ref.@11#. We note that the scheme corresponds t
parallel updating of the velocity vectors on the lattice a
thus is extremely effective for simulation of many-partic
processes, such as dispersion of initially dense particle c
ters. The whole procedure is discretized in space usin
square lattice ofN3N points and unit spacingD. Concern-
ing the temporal evolution, the Langevin equation is in
grated exactly in the spatial Fourier space. It is worth not
that the initial conditions for the stream functionh(r ,0) can
be chosen in such a way that the flow is in its statisti
steady state from the beginning of the simulation.

Note that the reproduction of the correct time depende
of Eulerian velocity field, following from the Kolmogorov’s
universality assumption and describing correctly both
lifetime of the structure of the flow and their sweeping by t
overall flow, is an unsolved problem@8#. On the other hand
the practically oriented simulations of the two-particle d
persion often start from essentially frozen flow structur
assuming that the temporal decorrelation of the partic
relative motion takes place because the pair as a who
moving, due to a mean velocity, relative to an essentia
frozen flow ~as proposed by a Taylor hypothesis, see S
21.4 of Ref.@3#!. This assumption serves as a basis for s
cessful numerical approaches@16,21#, see Sec. 6.5.1 of Ref
@10# for discussion. Thus, in applications, the time-depend
turbulent flow is often mimicked either by sweeping a froz
array of eddies past the laboratory frame by some cons
velocity @21# or by sweeping indefinitely persisting eddies
the overall~self-consistent! velocity field @22#, all leading to
reasonable results. The velocity field in our case belo
essentially to the same class.

In Ref. @9# it was shown that the properties of the par
cle’s dispersion in flows in whicht}Lb with b.2/3, behave
essentially similar to those of Kolmogorov flows. The corr
sponding result was proved numerically in Ref.@23#, follow-
ing the quasi-Lagrangian algorithm of Boffettaet al. in Ref.
@24#. The Lagrangian decorrelation process is then conne
not to Eulerian decorrelation, but to sweeping along op
flow lines. The effective correlation time then scales acco
ing to ts(r )}r /v(r )}t2/3, and the effective value ofb stag-
nates at the Kolmogorov value ofb52/3. In such situations
the Richardson’s law stems mostly from rare and ballistica
separated pairs. On the other hand, this does not mean
the properties of such dispersion does not depend on
temporal correlations in the flow: we address this questio
detail in Sec. III A. Moreover, the properties of man
particle dispersion in such flow will be addressed in Sec.
in hope that they are generic for chaotic two-dimensio
flows with Kolmogorov spatial scaling.

III. LAGRANGIAN DISPERSION AND RICHARDSON’S
LAW

One of the benefits of our kinematic simulations is
elucidate the Lagrangian~multipoint! properties of flows
with given Eulerian statistics. Within this perspective, w
focus on questions concerning turbulent dispersion. In p
ticular, the Richardson’s law, giving a superdiffusive beha
ior for the mean relative square distance of particles adve
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by a turbulent flow, has been extensively studied. This l
concerning the two-particle dispersion, was obtained by
chardson@3#, by summarizing results of various experimen
on the diffusion of ashes in the atmosphere. Formulated
terms of the distance between two fluid elementsR(t), ini-
tially in close vicinity, this law states that

^R2~ t !&5kt3. ~12!

The prefactork is typically expressed ask5G«, where« is
the energy dissipation rate of the turbulent flow andG is a
dimensionless constant referred in the literature as the R
ardson constant. Note that Richardson’s law is also know
‘‘four-thirds law,’’ since Eq.~12! can be obtained from the
diffusion equation with the diffusion coefficientD(R) de-
pending onR asR4/3. This important law can be understoo
in the general frame of Kolmogorov scaling description
turbulence@1,2#. There is a considerable amount of expe
mental data on relative dispersion supporting this law and
fact its range of validity is believed to go beyond the inert
subrange.

Although in our kinematic simulations no energy trans
and dissipation take place, we could formally define the
ergy dissipation rate« based on the prescribed energy spe
trum @2#. Without going into the detail, the expression for«
can be expressed as@11#

«[2
dE

dt
5E

0

kmax
dk 2nk2E~k,t !, ~13!

wherekmax represents the cutoff of the inertial range. In o
approach, due to computational limitations, the largest w
numberkmax depends onN andD.

More useful for our formal scheme is the formulation
the Richardson’s prefactor in terms of the scaling proper
of the flow. Well-developed turbulent flows show the Ko
mogorov’s scaling, in which the mean-squared relative
locity at two points separated by a distancer

^v r
2~r !&5^„v~r 8,t !2v~r 81r ,t !…2& ~14!

behaves aŝv r
2(r )&5Ar2/3, whereA5CL«2/3 with CL being

a numerical factor~connected in real 3d, flows with the Kol-
mogorov’s constant defining the spectrum!. The value ofA
in our simulations can be analytically estimated~see the Ap-
pendix! from the general expression for the velocity corre
tion function, Eq.~10!, and finally reads

^v r
2~r !&'2.637

u0
2

l 0
2/3

r 2/3. ~15!

This expression has been checked numerically with our
synthetic flows.

On the other hand, the value of the prefactork in the
Richardson’s law, Eq.~12!, can be interpreted in terms of
separation velocityvsep(r ), defined throughdr /dt5vsep(r ).
According to Eq.~12! the separation velocity scales in th
same way as one of the mean-square relative velocity of
flow, but with a different prefactor:vsep

2 (r )5Br2/3. Actually,
the prefactorB is related to that one appearing in the Ric
ardson’s law viaB5 9

4 k2/3. The difference between th
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FIG. 1. ^ R2 & vs time for different sets of parameter values. Left panel: log-log representation. All the cases show reasonable ag
with the Richardson’s law,̂ R2 &;t3. Right panel:̂ R2 & /t3 representation. Note that in all the figures in this paper no units are spec
since the results of our simulations are dimensionless.
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2(r )& and vsep

2 (r ) is due to the temporal decorrelation
the relative velocity of the particles, as will be discuss
below.

A. Numerical results

The numerical simulation of the dispersion of passive p
ticles by a synthetic two-dimensional flow is performed
integrating the equations of motion of these particles@25#

dX

dt
5V~X,t !, ~16!

whereX5(X,Y) is the position of the particle. The value o
the velocityV(X)5„Vx(X),Vy(X)… is interpolated using the
bilinear form

Va~X!5~12j!~12m!Vp,q
a 1~12j!mVp,q11

a

1j~12m!Vp11,q
a 1jmVp11,q11

a . ~17!

In this expression,a denotes the velocity’s Cartesian com
ponent,p5@X/D# andq5@Y/D# give the coordinates of the
grid’s cell in which the pointX is located, and the valuesj
5$X/D% andm5$Y/D% determine the relative position of
point within a cell. Here@z# and $z% denote the whole and
fractional parts ofz, respectively.V i , j (t) stands for the dis-
cretized synthetic velocity field, Eq.~3!, introduced in Sec.
II.

We start from the set of an array ofM3M particles with
a closest interparticle separation fixed at 0.1 and pla
within a square in the center of the system. We integrate
~16! using a second-order Runge-Kutta method with a sm
step compared with the flow characteristic time (Dt
<0.1t0). We average over 100 realizations of the flow in
the results in this work. Although we use periodic bounda
conditions for the flow we do not want the particles to rea
the boundaries of the system. When this happens we
that realization and start another one. The final average f
variable at any given time only contains those realizatio
that still were valid at that time. Although we may loos
d

r-

d
q.
ll

l
y
h
op
a

s

some statistics at long times, we reduce much this effec
using large systems. When computing the two-particle d
tancesR we choose all the possible pairs, namely, we ha
M2(M221)/2 pairs for each realization. Our systems a
grids ofN5512 withD50.5 and the discretization in time i
Dt50.1. All the parameters of the simulation~discretization
values, size of the system, etc.! have been previously
checked in order to reproduce the correct statistical prop
ties of the flow and to ensure numerical stability.

The average relative distance is calculated according

R2~ t !5
2

M2~M221!
(
i . j

^„X i~ t !2X j~ t !…2&. ~18!

For intermediate times the Richardson’s law, Eq.~12!,
applies andk is calculated from the plot of̂R2(t) & /t3 as a
function of t, in the interval where this function is almos
constant between the initial and asymptotic times. In t
interval we fit a horizontal line and we could get the error
k from the difference between the maximum and the mi
mum value of the above-mentioned function during the p
teau.

In order to study the dispersion features of the flow a
cording to its statistical properties, we simulate some ca
with different values of the flow parametersu0

2, l 0, and t0.
Figure 1 shows the dispersion results for four of these ca
where we can see the effect of the variation of each one
the flow parameters. We can calculateB directly from the
value of k, and by using Eq.~15! for A, we compute the
value of AB/A. Notice thatAB/A corresponds to the ratio
between the separation velocity and the square root of
mean-squared relative velocity in Eq.~14!. Within the model
of Ref. @10# such a quantity is proportional to a persisten
parameterPs of the flow. In Table I we have summarize
these results for some cases, included those in Fig. 1.

When analyzing the results of Table I we realize, first
all, that all the values ofAB/A are much smaller than one
With respect to the effect of the turbulence parameters
this quantity, Table I shows that the longer the life of t
eddies (t0), the larger the intensity of the flow (u0

2), and the
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TABLE I. Values ofk, B, A, andAB/A for our numerical simulations with different turbulence para
eters.

l 0 u0
2 t0 k B A AB/A

8.0 1.0 8.0 6.6031025 0.0036 0.659 0.0741
8.0 1.0 12.0 1.6131024 0.0066 0.659 0.1000
8.0 1.0 20.0 3.7831024 0.0117 0.659 0.1334
8.0 1.0 24.0 4.6231024 0.0134 0.659 0.1424
8.0 4.0 8.0 2.2831023 0.0389 2.637 0.1212
8.0 4.0 12.0 3.5231023 0.0520 2.637 0.1403
8.0 4.0 16.0 5.2831023 0.0682 2.637 0.1606
8.0 4.0 20.0 6.3331023 0.0769 2.637 0.1706
8.0 4.0 24.0 7.9231023 0.0893 2.637 0.1838
8.0 6.0 8.0 6.2031023 0.0759 3.955 0.1382
8.0 6.0 12.0 8.7131023 0.0952 3.955 0.1549
4.0 1.0 12.0 1.4331023 0.0285 1.046 0.1652
6.0 1.0 12.0 3.9131024 0.0120 0.798 0.1230
10.0 1.0 12.0 1.0231024 0.0049 0.568 0.0931
4.0 1.0 6.0 5.4531024 0.0150 1.046 0.1196
4.0 2.0 12.0 5.6031023 0.0709 2.092 0.1841
n
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smaller are the eddies (l 0), then the larger is the separatio
velocity. Figure 2 shows that the value ofB/A tends to fol-
low a universal function of a dimensionless combinati
u0t0 / l 0. Taking into account the fact that for some combin
tion of parameters the Richardson’s plateau in Fig. 1~right!
is rather short~which does not allow to determine the Ric
ardson’s constant with high accuracy!, the quality of the
scaling in Fig. 2 can be considered rather good. The com
nationu0t0 / l 0 is similar in structure to a persistence para
eter Ps of the flow, introduced in Refs.@9# and @10# as a
combinationPs5v0t0 /r 0 of characteristic Lagrangian time
velocity, and length scales of the relative motion~see Sec.
III B !. This means that although no simple relation exi
between these parameters and the Eulerian flow param
(u0

2, t0 ,l 0), the corresponding combinations are functiona
dependent.

FIG. 2. Values ofB/A plotted against the dimensionless com
binationu0t0 / l 0 for all the cases in Table I. The full line is draw
as a guide for the eye.
-

i-
-

s
ers

B. Theoretical background

In order to understand the behavior described above
us recall some results on well-developed turbulent flo
showing Kolmogorov scaling. The two-time correlatio
function of the relative velocities,vr(r ,t)5„v(r 8,t)2v(r 8
1r ,t)…, at points separated by the distancer, behaves as
@9,10#

^vr~r ,t1!vr~r ,t2!&}^v r
2~r !&g@~ t22t1!/t~r !#, ~19!

where t(r ) is a distance-dependent correlation time, theg
function is defined so thatg(0)51, and^v r

2(r )& was intro-
duced in Eq.~14!. Note that Eq.~19! applies to Lagrangian
characteristics~pertinent to a situation where a coordina
frame is fixed on one of the particles of the pair!.

The possible scenarios of the two-particle dispersion i
flow whose spatial scaling follows the Kolmogorov prescr
tion were analyzed in Refs.@9,10#, and@23#. Thus, one sup-
poses

^v r
2~r !&}v0

2S r

r 0
D a

~20!

with a52/3. Let us assume in addition that

t~r !}t0S r

r 0
D b

. ~21!

Then the Richardson laŵR2(t) &5kt3 will hold asymptoti-
cally for the flows in which the value ofb>2/3. For a well-
developed Kolmogorov case one would supposeb52/3, in
which case the properties of the flow would be described
a dimensionless number parameterPs5v0t0 /r 0, being a
combination of characteristic Lagrangian time, velocity, a
lengthscales of the relative motion. The parameter can
interpreted as a quotient of the mean-free path of the p
ticles’ relative motion and the actual distance, so that
small values ofPs correspond to the dominance of the d
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fusive transport, while the largePs values show that the
transport is dominated by the ballistic events. ForPs small,
the value ofAB/A will be proportional toPs .

The values ofAB/A listed in Table I make evident tha
the weight of the ballistic component of relative motion u
der all flow parameters considered is rather small, so that
Richardson’s behavior corresponds to highly weigthed dif
sive relative trajectories complemented with only a few b
listically separated pairs. As we proceed to show, this find
is compatible with a dispersion of the initial cluster in fe
smaller clusters. This idea is studied with more detail in S
IV A.

IV. FURTHER ANALYSIS OF SIMULATION RESULTS

As anticipated, our simulation scheme allows us to extr
additional information for particle dispersion apart from d
persion data concerning Richardson’s law. This is going
be discussed in what follows.

A. Analysis of particle trajectories

Analyzing the trajectories of our cluster dispersion sim
lations help us to understand the significance of the fl
persistence and the dispersion mechanisms leading to
Richardson’s behavior. Since this behavior is characteri
in terms of the interparticle distance variable,R(t), we study
both single and relative trajectories.

Let us consider a single realization of our numerical d
persion simulations, namely, a dense cluster of 10310 par-
ticles in the middle of the system. As the time evolves,
typical picture of hydrodynamical mixing, consisting of th
elongation and folding of the initial droplet, applies. As
result, an initially dense cluster is separated into several o
of similar density. This process is clearly seen in Fig. 3
the positions of the 100 particles and in Fig. 4 for the relat

FIG. 3. Absolute positions of the 10310 particles for the case
with u0

251, l 054, and t0512 shown in Fig. 1. The snapsho
correspond to timest520,40,60, and 120.
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r
e

distances of the 9900 possible pairs@( i , j ) and the symmetric
pairs (j ,i )#. The sequences in Figs. 3 and 4 correspond
times t520,40,60, and 120 for the case withu0

251, l 054,
and t0512 shown in Fig. 1. At early times, close to the fir
snapshot, the particles move accordingly to the well-kno
elongation and folding mechanisms before the system en
the Richardson regime. Obviously, this early behavior is
captured by looking only at the first snapshot, since it cor
sponds to a single frame of the particles’ evolution. The s
ond and third pictures are taken during the Richardso
range. Notice how the system is still clusterized there. Mo
over, in those times it is clearly seen how some ballis
events are evidenced in the relative representation. In spi
this, most of the relative positions are still concentrated i
central cluster corresponding to those pairs that have
been dispersed by the flow. The symmetric satellite gro
~in the relative plots! can be associated with the separation
particles that are in different clusters, whereas the dense
tral cluster corresponds to the pairs that are traveling in
same cluster. The last snapshot stands for a very long t
when the particles are completely uncorrelated.

We can learn even more things by comparing this c
~large-t0 case! with, for instance, the same case witht056
~small-t0 case, also shown in Fig. 1!. We show in Figs. 5 and
6 the positions and the relative distances, respectively,
this new case. By comparing both cases, we realize that
small-t0 case shows a more clusterized way of dispersi
namely, the particles travel mostly together in fewer a
denser clusters than in the large-t0 case.

The behavior reported is coherent with the value of o
effective persistence parameterAB/A. By looking at Table I
we get thatAB/A50.1652 for the large-t0 case andAB/A
50.1196 for the small-t0 case. Since the large-t0 case has a
larger value ofAB/A we found a larger amount of ballisti
events than in the small-t0 case. We can generalize this b
havior by looking at the trajectories and relative trajector

FIG. 4. Relative distances corresponding to the snapshots sh
in Fig. 3.
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of the other cases in Table I. The cases with smallerAB/A
have fewer ballistic separations between particles an
larger number of diffusive and chaotic events than in
cases with largerAB/A.

In general, all the values ofAB/A for our flow ~at least for
the parameters shown in this work! are much smaller than 1
and therefore the dispersion mechanism is mostly diffus
dominated. We have seen how most of the initially clo
pairs stay close to each other considerable times, perform
similar motions even when̂R2&;t3 applies. In other words

FIG. 5. Absolute positions of the 10310 particles for the case
with u0

251, l 054, andt056 shown in Fig. 1. The snapshots co
respond to timest520,40,60, and 120.

FIG. 6. Relative distances corresponding to the snapshots sh
in Fig. 5.
a
e

e
e
ng

Richardson’s behavior for our flows comes to a large ext
from rare ballistically separated pairs than from the typi
separation of a pair within a cluster. This cluster nature
turbulent dispersion has been also seen for an experime
flow in Ref. @26#.

B. Distribution of interparticle distances

To support this scenario we have computed the distri
tion of interparticle distancesP(R,t) at 10 different times for
the case withu0

251, l 054, andt0512 shown in Fig. 1. We
concentrated on the behavior of the median and the low
moments of this distribution. Thus we calculate the squ
root of the second moments(t)[A^R2(t)&, the first moment
m(t)[^R(t)&, and the medianL(t) defined as the distanc
such that half of the pairs have a separation smaller thatL.

The time evolution ofs, m, andL is shown in Fig. 7. In
this figure we also plot the relative momentsz[m(t)/s(t)
and l[L(t)/s(t). Both, the relative first momentz and the
relative medianl decay at the beginning, then they rema
rather constant during the Richardson regime@ tP(20
250)# and finally they grow when the diffusive regime
reached. The behavior of both variables during the Richa
son’s range stems from the fact that most of the partic
remain clusterized in the same number of clusters, or equ
lently, that the distance between pairs is dominated by
separation between clusters already existing rather than
the formation of new ones. This supports the idea introdu
in Sec. III and showed qualitatively in Sec. IV A. We ca
compare this behavior with the properties of the tw
dimensional Gaussian distribution and the Richardso
stretched-Gaussian law. Since both distributions scale w
time, the values ofl and z for them stay constant and ar
equal toz50.886 andl 50.832, andz50.751 andl 50.565
for the Gaussian and Richardson case, respectively@1#. Note
in Fig. 7 that the value ofl in our case is even considerab
lower than in the Richardson’s case, which shows the v
strong clusterization.

C. Relative velocity correlation functions

Another measure of the proportion of ballistically sep
rated pairs can also be estimated by calculating the direc
correlation functions of the relative velocities,

wn

FIG. 7. Time evolution for thes(t), m(t), andL(t) functions
and the two relative momentsz and l. Results from the case with
u0

251, l 054, andt0512 in Fig. 1.
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FIG. 8. Velocity correlation functionC(t,t) for the case withu0
251, l 054, andt056 in Fig. 1. Left panel: normal representation

times t520,40,60, . . . ,200~from bottom to top!. Right panel: scaled representation; notice how at times longer than 80~solid lines! the
functions scale quite well. We take the width of those scaled curves as the time memory of the flow.
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C~ t,t![^ei j ~ t !ei j ~ t1t!&. ~22!

The brackets mean an average over pairs and statistical
izations of the flow, ande(t) is the unit vector of the direc
tion of relative velocity of a pair (i , j ) at time t,

ei j ~ t ![
vi~ t !2vj~ t !

uvi~ t !2vj~ t !u
. ~23!

The functionC(t,t) is presented in Fig. 8 withu0
251,

l 054, andt056 at timest520,40,60, . . . ,200~from bottom
to top! for the parameters of Fig. 5. For negative values ot
this function gives a quantitative measure of the memory
the relative motion. The characteristic time of this memory
given by the width of those correlation functions. From t
left panel of Fig. 8 we infer that the memory time first grow
until it stagnates at long times~when the particles becom
uncorrelated!. In order to obtain a unique characterization
this time memory we scaleC(t,t) with t/t, as shown in the
right panel of Fig. 8. We can see how for short times~until
t580) the function does not scale at all, contrary to t
behavior at longer times when the scaling is rather good.
width of this scaled representation gives us a quantita
characterization of the memory of the flow.

If we compare the width of the scaled correlation fun
tions for different cases we can see how the systems
larger AB/A ~therefore, with more ballistic events!, have a
larger time memory. In Fig. 9 we plot the scaled correlat
function for the cases in Fig. 1 for the timet5120, since all
the cases scale at that time.

V. CONCLUSIONS

We have presented in this contribution a numerical stu
of the diffusion of passive scalars in synthetic turbule
flows. Making use of a practical algorithm to generate su
flows, we have simulated the two-particles and cluster d
persion by a turbulent flow.

We have focused on the two different dispersion mec
nisms~diffusive and ballistic! that lead to Richardson’s be
al-

n
s

f

e
e
e

-
th

y
t
h
-

-

havior. By defining our effective persistence parame
AB/A, we have quantified the proportion of either diffusiv
or ballistic events that coexist under the samet3 law.

We have found that the larger aret0 and u0
2, and the

smaller is l 0, the larger isAB/A, and therefore the large
number of pairs separate ballistically. We have also s
ported this idea by looking at the trajectories, the distribut
of interparticle distances, and the relative velocity correlat
functions. Moreover, the cluster nature of the dispersion
der our turbulent flows is pointed out.
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APPENDIX

Starting from the definition of the mean-square relat
velocity in Eq.~14! in terms of velocity correlation function
we have

^v r
2~r !&54„u0

22C~r ,0!…. ~A1!

If we rewrite Eq.~10! for the velocity correlation function in
terms of the generalized hypergeometric seriesF2(a;b,c;d)
@27# we obtain

C~r ,0!5
e0

4pl4 F G~1/3!

2G~7/3!
F2~2;2/3,1;r 2/4l2!

1S r

l D 2/3 G~21/3!

25/3G~4/3!
F2~7/3;4/3,4/3;r 2/4l2!G .

~A2!

For r /l much smaller than 1,

C~r ,0!5
e0

4pl4 F G~1/3!

2G~7/3!
1S r

l D 2/3 G~21/3!

25/3G~4/3!
1o~r 2/l2!G .

~A3!
-

v

d
h

J.

We know thatG(7/3)5 4
3 G(4/3)5 4

3
1
3 G(1/3) and therefore

C~r ,0!5
e0

4pl4 F9

8
1S r

l D 2/3 G~21/3!

25/3G~4/3!
1o~r 2/l2!G .

~A4!

This expression can be reduced considering thatu0
2

59e0/32pl4,

C~r ,0!5u0
2F11S r

l D 2/3 4G~21/3!

922/3G~4/3!
1o~r 2/l2!G .

~A5!

Including this expression into Eq.~A1! we obtain

^v r
2~r !&5u0

2 16G~21/3!

922/3G~4/3!
S r

l D 2/3

. ~A6!

Finally, by replacingl by its dependence withl 0 we get

^v r
2~r !&5

u0
2

l 0
2/3

16G~21/3!

922/3G~4/3!

G2/3~1/2!G2/3~5/6!

22/3G2/3~1/3!
r 2/3

'2.637
u0

2

l 0
2/3

r 2/3. ~A7!
J.
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