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Particle dispersion in synthetic turbulent flows
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We study particle dispersion advected by a synthetic turbulent flow from a Lagrangian perspective and focus
on the two-particle and cluster dispersion by the flow. It has been recently reported that Richardson’s law for
the two-particle dispersion can stem from different dispersion mechanisms, and can be dominated by either
diffusive or ballistic events. The nature of the Richardson dispersion depends on the parameters of our flow and
is discussed in terms of the values of a persistence parameter expressing the relative importance of the two
above-mentioned mechanisms. We support this analysis by studying the distribution of interparticle distances,
the relative velocity correlation functions, as well as the relative trajectories.

PACS numbegs): 47.27.Qb, 47.27.Eq, 05.40a

[. INTRODUCTION bulent flow, as described by the Richardson’s law. Since the
initial work of L.F. Richardsori3], a large amount of work
The diffusion of a passive scalar convected by a statistihas been donp4—8] to understand the dispersion processes

cally homogeneous and isotropic turbulent flow is a problenthat lead to this behavior. It has been recently sh¢&a0]
of practical and fundamental interest in a great variety ofthat different dynamical mechanisms can lead to the same
contexts such as chemical reactions, mixing of fluids, andrichardson’s law for the two-particle dispersion, so that such
spreading of pollutants. Many important results on turbulenglispersion can be dominated by either dlffuswe'or' balllst_lc
diffusion are formulated in Lagrangian coordinateee, for ~€vents. In this paper we are going to support this idea with

example, Monin and Yaglorfil] and McComb[2]), where the numerical results of particle dispersions under our syn-

the coordinate frame is associated with a moving fluid ele—thet'c turbulence. . . .
The paper is organized as follows: in Sec. Il we introduce

ment. Since no simple connections between the Lagrangian

properties of the flow and the Eulerian properties of the ve:[he synthetic flow and the way we generate it. In Sec. lll we

locity field (measured in a laboratory framean be formu- focus on Richardson’s law and discuss the statistical nature

lated, much effort was invested into numerical modeling ofs\fl the pr(l)ce_ss un_derlyw;]g th]lf stronfglil] e?lhanced dispersion.
flows with given Eulerian or Lagrangian characteristics. @ mainly investigate the etlects of the flow parameters on

Our approach is based on the use of a two—dimensiona{ﬂe Richardson’s behavior. Although the dispersion law is

synthetic turbulent flow with prescribed statistical properties.t € same, t.he mpdlflcanon C.)f the turbplen_ce parameters
akes the dispersion mechanism more diffusionlike or more

In our simulations we first generate the flow in all the syste S . ; . :
ballistic, depending on the typical length, correlation time,

and then let the particles move advectively and without in d 4 velocitv of the i n Sec. IV ¢
ertia according to the velocity field. Our method of genera-2Nd mean-squared velocity of the flow. In Sec. IV we enforce

tion of this field is based on a parallel update procedure?he previous ideas by looking at the trajectories, distribution

Although the algorithm spends much time with updating theOf in'gerpartiple distances, and .relative vglocity cor_relation

whole-lattice velocity field(in comparison with the normal functions. Finally, Sec. V contains the main conclusions.

schemes where the velocity field is calculated only at the

particle position_)s it @s suitable for. the c:_;tlculation of many- Il. STOCHASTIC VELOCITY FIELDS

particle properties, i.e., for the discussion of cluster disper-

sion, distance probability distributions, and some other In this section we describe a numerical method to gener-

position-dependent quantities that are going to be examinegte a statistically homogeneous, isotropic, and stationary

in this paper. two-dimensional velocity field, which could represent a
Our main aim is to study the Lagrangian dispersion of‘synthetic” or “kinematic” turbulent flow with zero mean

particles advected by the previously mentioned synthetic turand well-defined statistical properties. Our present paper is
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entirely implemented in a two-dimensional space, however itvhereE(k) is the energy spectrum of the flow, and the char-
is worth noting that it can be generalized to three dimensionsacteristic(integra) time and length scales

(3D) [11]. The two-dimensional space is chosen here for

several reasons. First of all, it is chosen for the sake of sim- o

plicity of the numerical simulations. Second, because the tOZE o ds G0s),

two-dimensional turbulence has considerable interest of its 0

own. Such interest is connected with the experimental results

that are important both from the fundamentaée[12] or | :ifm dr C(r,0) @
more recently Paret and Tabelifd,3]) and from an applied 0 u3 Jo o

viewpoint (see for example, Brown and Smiffi4]).

The starting point of our two-dimensional simulations is aThese parameters can be obtained as functions of the input
Langevin equation for a stream functior,t), parametersy, €, and\, for each specific form of the energy
spectrum. In particular the spectrum is directly related with
the Q operator. In what follows we consider the’figaen-
Obukhov (KO) spectrum[19,20, which was introduced to
study Kolgomorov turbulence and parametrizes i)
wherev is the kinematic viscosityQ[ A2V ?] denotes an op- function in the following way:
erator which controls the spatial correlations with a charac-
teristic lengthh and {(r,t) is a Gaussian white-noise field
with zero mean value and whose covariance is given by

an(r,t)
at

=vV29(r,t)+ Q[N2V2]V - £(r,1), (1)

21713

1+ —
kS

E(k)xk3 (8)

(Q(rt) 2(rp,tp)) =2€wd(ty —tp) 8(ry—12) 8%, (2)  This spectrum follows the widely accepted Kolmogorov-
h he i v of th o f th Obukhov power lawE(k)~k ™3 for the inertial range K
where the intensity of the nois, is a parameter of the . » ot \well-developed homogeneous and isotropic turbu-

S|mul(ejlt|ons. Tﬂe Langew? eqllJat_lon (;ar;] he forma}lly N 1ent flow. According to this energy spectrum the choice of
grated to get the temporal evolution of the stream unCt'ontheQ operator ig11]

Turning to a Fourier-space we see that Bg.corresponds to
building up the field from the independent Fourier modes Q[N\2V2]=(1—\2V?2)~ 7l 9
and in this sense parallels to the kinematic simulations fol-
lowing the ideas of Ref$15-18. Using Eq.(1) corresponds  where\ = (9/5)Y%, . In this case we derive foE(r,s) the
to the change from an intrinsic randomnéassociated to the  following expression:
complex behavior resulting from the nonlinearity of the
Navier-Stokes equatigrinto a system of independent Fou- € (= 73 )
rier modes coupled to an external noise with prescribed sta-C(.8)= in fo dk K¥Jo(kr)(1+XN?k?) ™ "exp — vk®s).
tistical characteristics. (10)
The incompressible two-dimensional velocity field fol-
lows then as Equation(10) shows that the lifetime of the Fourier compo-
nents of our flow behaves according 1@ « 2, a signature
_dn(r,y) an(r,H 3 of a diffusive process supposed by a Langevin dynamics.
ay ' Ix Thus, the lifetime of a structure of sizegrows proportion-
ally to 7L ? (as typical, say for the turbulent velocity fields
The main kinematic characteristics of the stochastic velocityn the viscous rangeand does not follow the Kolmogorov
field is the velocity correlation functiol€(r,s), which is  scaling supposingoL?3. Therefore, the larger structures of
defined as our flow are more persistent that ones in real turbulence.
However this is not essential for the discussion of the disper-
Cij(r,8)=(vi(ry,Hvj(ro,t")). (4)  sion properties of the flow since, as demonstrated, they are
the same as those that follow from Kolmogorov's universal-
As a consequence of the homogeneity, isotropy, and statiornity class.
arity of the ﬂOW, the correlation functions depend Only on The results for the three basic physical parameté"stol

relative coordinates =|r;—r,| of two points and on the andl,, in terms of the simulation parametees,, \, and v,
time differences=|t—t’|. More specifically, we will employ  5re then

the radial correlation function defined by

v(r,t)=

C(r,8) =4[ Cyu(r,8)+Cyy(,9)] (5) 2_ 9€0_
R ety 1T 3om e
The physical parameters characterizing the homogeneous )
and isotropic turbulent flow are the following: the mean- t _)\_
square velocity, (intensity) defined in a way that 03y
2 * I'(1/2)I'(5/6)
u=C0,0=fEkdk, 6 =N
0=C(0,0 . (k) (6) o=\ ST (13 (1)
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A detailed presentation of the way the algorithm just pro-by a turbulent flow, has been extensively studied. This law
posed is implemented to simulate turbulent flows can be&oncerning the two-particle dispersion, was obtained by Ri-
found in Ref.[11]. We note that the scheme corresponds to achardsor 3], by summarizing results of various experiments
parallel updating of the velocity vectors on the lattice andon the diffusion of ashes in the atmosphere. Formulated in
thus is extremely effective for simulation of many-particle terms of the distance between two fluid elemeR(s), ini-
processes, such as dispersion of initially dense particle clugially in close vicinity, this law states that

ters. The whole procedure is discretized in space using a

square lattice oNXx N points and unit spacing. Concern- (R(t))=«t®. (12)

ing the temporal evolution, the Langevin equation is inte- . ) )
grated exactly in the spatial Fourier space. It is worth noting' € Prefactori is typically expressed as=Ge, wheres is

that the initial conditions for the stream functiop{r,0) can  the energy dissipation rate of the turbulent flow dds a
be chosen in such a way that the flow is in its statisticald'mens'onless constant referred in the literature as the Rich-

steady state from the beginning of the simulation. ardson constant. Note that Richardson’s law is also known as

Note that the reproduction of the correct time dependenceoUr-thirds law,” since Eq.(12) can be obtained from the
of Eulerian velocity field, following from the Kolmogorov's diffusion equation with the diffusion coefficie2(R) de-
universality assumption and describing correctly both the?ending onR asR™™. This important law can be understood
lifetime of the structure of the flow and their sweeping by thein the general frame of Kolmogorov scaling description of
overall flow, is an unsolved problef8]. On the other hand, turbulencef1,2]. There is a considerable amount of experi-
the practically oriented simulations of the two-particle dis-Mental data on relative dispersion supporting this law and in
persion often start from essentially frozen flow structuresfact its range of validity is believed to go beyond the inertial
assuming that the temporal decorrelation of the particlessubrange. _ o .
relative motion takes place because the pair as a whole is Although in our kinematic simulations no energy transfer
moving, due to a mean velocity, relative to an essentially2nd dissipation take place, we could formally define the en-
frozen flow (as proposed by a Taylor hypothesis, see Secrgy dissipation rate based on the prescribed energy spec-
21.4 of Ref.[3]). This assumption serves as a basis for sucirum [2]. Without going into the detail, the expression for
cessful numerical approachEss,21], see Sec. 6.5.1 of Ref. can be expressed &51]

[10] for discussion. Thus, in applications, the time-dependent .
turbulent ﬂovy is often mimicked either by sweeping a frozen e=— —— = f maxdk2vk2E(k,t), (13)
array of eddies past the laboratory frame by some constant dt

velocity[21] or by sweeping indefinitely persisting eddies by

the overall(self-consistentvelocity field[22], all leading to ~ Wherekp,,, represents the cutoff of the inertial range. In our
reasonable results. The velocity field in our case belonggpproach, due to computational limitations, the largest wave
essentially to the same class. numberk,,x depends oM and A.

In Ref. [9] it was shown that the properties of the parti- More useful for our formal scheme is the formulation of
cle’s dispersion in flows in whicheL? with 8> 2/3, behave the Richardson’s prefactor in terms of the scaling properties
essentially similar to those of Kolmogorov flows. The corre-of the flow. Well-developed turbulent flows show the Kol-
sponding result was proved numerically in RéX3], follow- ~ mogorov’s scaling, in which the mean-squared relative ve-
ing the quasi-Lagrangian algorithm of Boffettaal.in Ref.  locity at two points separated by a distance
[24]. The Lagrangian decorrelation process is then connected 5 , ) )
not to Eulerian decorrelation, but to sweeping along open (Ui ()= ((v(r’,t)=v(r'+r,t))%) (14)
flow lines. The effective correlation time then scales accord- 5 o3 . )
ing to 7(r)er/v(r)=t??3, and the effective value g8 stag-  Pehaves asur(r))=Ar=", whereA=C &“" with C,_being
nates at the Kolmogorov value @=2/3. In such situations @ numerical facto(conne_ct.ed in real @, flows with the Kol-
the Richardson’s law stems mostly from rare and ballistically0gorov's constant defining the spectiurithe value ofA
separated pairs. On the other hand, this does not mean tHgtOUr simulations can be analytically estimatsee the Ap-
the properties of such dispersion does not depend on tHéendm) frqm the general expression for the velocity correla-
temporal correlations in the flow: we address this question ifion function, Eq.(10), and finally reads
detail in Sec. Ill A. Moreover, the properties of many-
particle dispersion in such flow will be addressed in Sec. 1V,
in hope that they are generic for chaotic two-dimensional
flows with Kolmogorov spatial scaling.

2

Uo
(vf(r)>%2.637|2—/3r2/3. (15)

0

This expression has been checked numerically with our KO
synthetic flows.

On the other hand, the value of the prefactoiin the
Richardson’s law, Eq(12), can be interpreted in terms of a

One of the benefits of our kinematic simulations is toSeparation velocityser), defined throughdr/dt=vge(r).
elucidate the Lagrangiaimultipoint) properties of flows According to Eq.(12) the separation velocity scales in the
with given Eulerian statistics. Within this perspective, wesame way as one of the mean-square relative velocity of the
focus on questions concerning turbulent dispersion. In parfow, but with a different prefactonzgep(r)= Br2?3 Actually,
ticular, the Richardson’s law, giving a superdiffusive behav-the prefactoB is related to that one appearing in the Rich-
ior for the mean relative square distance of particles advecteardson’s law viaB=$«%3 The difference between the

IIl. LAGRANGIAN DISPERSION AND RICHARDSON'S
LAW
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FIG. 1. ( R?) vs time for different sets of parameter values. Left panel: log-log representation. All the cases show reasonable agreement
with the Richardson’s law( R? )~t3. Right panel{ R?) /t® representation. Note that in all the figures in this paper no units are specified
since the results of our simulations are dimensionless.

<Ur2(r)> and Vgep(r) is due to the temporal decorrelation of Some statistics at long times, we reduce much this effect by

the relative velocity of the particles, as will be discussediSiNg large systems. When computing the two-particle dis-
below. tancesR we choose all the possible pairs, namely, we have

M2(M?2—1)/2 pairs for each realization. Our systems are

grids of N=512 withA=0.5 and the discretization in time is

At=0.1. All the parameters of the simulatiddiscretization
The numerical simulation of the dispersion of passive parvalues, size of the system, étchave been previously

ticles by a synthetic two-dimensional flow is performed bychecked in order to reproduce the correct statistical proper-

integrating the equations of motion of these parti¢ss] ties of the flow and to ensure numerical stability.

The average relative distance is calculated according to

A. Numerical results

dXx
——=V(X,1), (16)
dt 2 2 2

RA(1)= ————— 2, ((X(D=X;(1)D). (18
whereX = (X,Y) is the position of the particle. The value of MA(M*=1) =]

the velocityV (X) = (V*(X),V’(X)) is interpolated using the For intermediate times the Richardson’s law, E#j2),

bilinear form applies andx is calculated from the plot of R%(t) ) /t* as a
a1 _ « B « function oft, in the interval where this function is almost
VI =(A=HA=p)Vp gt (1= HuVpqis constant between the initial and asymptotic times. In this
+E(1— Ve 1 g+ ERVE i1 (17)  interval we fit a horizontal line and we could get the error in

x from the difference between the maximum and the mini-
In this expressiong denotes the velocity’s Cartesian com- mum value of the above-mentioned function during the pla-
ponentp=[X/A] andq=[Y/A] give the coordinates of the t€au. _ _
grid’s cell in which the poiniX is located, and the valugs In order to study the dispersion features of the flow ac-
={X/A} andu={Y/A} determine the relative position of a cording to its statistical properties, we simulate some cases
point within a cell. Herez] and{z} denote the whole and With different values of the flow parameteus, |o, andto.
fractional parts ofz, respectivelyV, ;(t) stands for the dis- Figure 1 shows the dispersion results fqr four of these cases
cretized synthetic velocity field, Eq3), introduced in Sec. Where we can see the effect of the variation of each one of
Il. the flow parameters. We can calculd@edirectly from the

We start from the set of an array bf x M particles with ~ value of x, and by using Eq(15) for A, we compute the
a closest interparticle separation fixed at 0.1 and placedalue of VB/A. Notice that\B/A corresponds to the ratio
within a square in the center of the system. We integrate Edpetween the separation velocity and the square root of the
(16) using a second-order Runge-Kutta method with a smalmean-squared relative velocity in Ed4). Within the model
step compared with the flow characteristic tim@t( Of Ref.[10] such a quantity is proportional to a persistence
<0.1t,). We average over 100 realizations of the flow in all parameterP of the flow. In Table | we have summarized
the results in this work. Although we use periodic boundarythese results for some cases, included those in Fig. 1.
conditions for the flow we do not want the particles to reach When analyzing the results of Table | we realize, first of
the boundaries of the system. When this happens we stafl, that all the values of/B/A are much smaller than one.
that realization and start another one. The final average for @ith respect to the effect of the turbulence parameters on
variable at any given time only contains those realizationghis quantity, Table | shows that the longer the life of the
that still were valid at that time. Although we may loose eddies {;), the larger the intensity of the rovxuﬁ), and the
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TABLE I. Values ofk, B, A, andB/A for our numerical simulations with different turbulence param-

eters.

lo u3 to K B A JBIA
8.0 1.0 8.0 6.6610°° 0.0036 0.659 0.0741
8.0 1.0 12.0 1.6x10°4 0.0066 0.659 0.1000
8.0 1.0 20.0 3.7810°% 0.0117 0.659 0.1334
8.0 1.0 24.0 462104 0.0134 0.659 0.1424
8.0 4.0 8.0 228103 0.0389 2.637 0.1212
8.0 4.0 12.0 3.5210°° 0.0520 2.637 0.1403
8.0 4.0 16.0 528103 0.0682 2.637 0.1606
8.0 4.0 20.0 6.33103 0.0769 2.637 0.1706
8.0 4.0 24.0 7.9210°3 0.0893 2.637 0.1838
8.0 6.0 8.0 6.260010°3 0.0759 3.955 0.1382
8.0 6.0 12.0 8.7%x10°3 0.0952 3.955 0.1549
4.0 1.0 12.0 1481073 0.0285 1.046 0.1652
6.0 1.0 12.0 3.9x10°% 0.0120 0.798 0.1230
10.0 1.0 12.0 1.0210°4 0.0049 0.568 0.0931
4.0 1.0 6.0 5.4%10 ¢ 0.0150 1.046 0.1196
4.0 2.0 12.0 5.6810 2 0.0709 2.092 0.1841

smaller are the eddied), then the larger is the separation B. Theoretical background
velocity. Figure 2 shows that the value BfA tends to fol- In order to understand the behavior described above, let

low a universal function of a dimensionless combinationys recall some results on well-developed turbulent flows
Uoto/lo. Taking into account the fact that for some combina-showing Kolmogorov scaling. The two-time correlation
tion of parameters the Richardson’s plateau in Fidright) function of the relative velocitiesy, (r,t)=(v(r’,t)—v(r’

is rather shortwhich does not allow to determine the Rich- +r t)), at points separated by the distangebehaves as
ardson’s constant with high accuracyhe quality of the [9,10]

scaling in Fig. 2 can be considered rather good. The combi-

nationugty/l, is similar in structure to a persistence param- (Ve (rt)Ve (1)) () gl (t,—ty)/7(r)],  (19)
eter P of the flow, introduced in Refd.9] and[10] as a

mbinationP¢= ro of char ristic Lagrangian tim o . .
combinationPs=wvo7o /T Of characteristic Lagrangian time, -0 id etined so thay(0)=1, and(v?(r)) was intro-

velocity, and length I f the relative moticme . : : :

IIIeEc’:(): )'/I:h?s dmeear?s tr?;? zihc())u he nﬁ asime le Orelati?)nSZf(istsduced in Eq(14). Note that Eq/(19) applies to Lagrangian
' 9 P characteristicgpertinent to a situation where a coordinate

between these parameters and the Eulerian flow parametefr

> . L . FAme is fixed on one of the particles of the pair
(ug, to,lo), the corresponding combinations are functionally e possible scenarios of the two-particle dispersion in a

where 7(r) is a distance-dependent correlation time, the

dependent. flow whose spatial scaling follows the Kolmogorov prescrip-
tion were analyzed in Ref§9,10], and[23]. Thus, one sup-
poses
0.05
r o
(vi(r))=vg —) (20
0.04 | o
with a=2/3. Let us assume in addition that
0.03
< r\?
@ (1)< 7y P (21)
0.02 | 0
Then the Richardson lagwR?(t) ) = «t will hold asymptoti-
001 | cally for the flows in which the value g8=2/3. For a well-
‘ developed Kolmogorov case one would supp@se2/3, in
which case the properties of the flow would be described by
01 > : ' . a dimensionless number parametf=v,7,/ro, being a
3 4 5 6 o - 0 )
U/l combination of characteristic Lagrangian time, velocity, and

lengthscales of the relative motion. The parameter can be

FIG. 2. Values ofB/A plotted against the dimensionless com- interpreted as a quotient of the mean-free path of the par-

binationugty /I, for all the cases in Table I. The full line is drawn ticles’ relative motion and the actual distance, so that the
as a guide for the eye. small values ofP4 correspond to the dominance of the dif-
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FIG. 3. Absolute positions of the X010 particles for the case FIG. 4. Relative distances corresponding to the snapshots shown
with u3=1, l,=4, andt,=12 shown in Fig. 1. The snapshots in Fig. 3.
correspond to times=20,40,60, and 120.

distances of the 9900 possible pdifs,j) and the symmetric

fusive transport, while the Iarg@s values show that the pairs (i,|):| The sequences in Flgs 3 and 4 Correspond to
transport is dominated by the ballistic events. Pgrsmall,  timest=20,40,60, and 120 for the case with=1, 1,=4,
the value of/B/A will be proportional toPs. andt,=12 shown in Fig. 1. At early times, close to the first

The values ofyB/A listed in Table | make evident that snapshot, the particles move accordingly to the well-known
the weight of the ballistic component of relative motion un-elongation and folding mechanisms before the system enters
der all flow parameters considered is rather small, so that thghe Richardson regime. Obviously, this early behavior is not
Richardson’s behavior corresponds to highly weigthed diffucaptured by looking only at the first snapshot, since it corre-
sive relative trajectories complemented with only a few bal-sponds to a single frame of the particles’ evolution. The sec-
listically separated pairs. As we proceed to show, this findinggnd and third pictures are taken during the Richardson's

is compatible with a dispersion of the initial cluster in few range. Notice how the system is still clusterized there. More-
smaller clusters. This idea is studied with more detail in Secover, in those times it is clearly seen how some ballistic

VA events are evidenced in the relative representation. In spite of
this, most of the relative positions are still concentrated in a
IV. FURTHER ANALYSIS OF SIMULATION RESULTS central cluster corresponding to those pairs that have not

been dispersed by the flow. The symmetric satellite groups

AS. ant|c_|pated, our S|mulat|_o n sc.heme.allows us to extr_achn the relative plotscan be associated with the separation of
additional information for particle dispersion apart from dis- articles that are in different clusters, whereas the dense cen-

persion data concerning Richardson’s law. This is going t ral cluster corresponds to the pairs that are traveling in the

be discussed in what follows. same cluster. The last snapshot stands for a very long time,
_ _ _ _ when the particles are completely uncorrelated.
A. Analysis of particle trajectories We can learn even more things by comparing this case

Analyzing the trajectories of our cluster dispersion simu-(larget, case with, for instance, the same case wtgr 6
lations help us to understand the significance of the flowtsmall, case, also shown in Fig).1We show in Figs. 5 and
persistence and the dispersion mechanisms leading to tfethe positions and the relative distances, respectively, for
Richardson’s behavior. Since this behavior is characterizethis new case. By comparing both cases, we realize that the
in terms of the interparticle distance variabR{}), we study ~smallt, case shows a more clusterized way of dispersion,

both single and relative trajectories. namely, the particles travel mostly together in fewer and
Let us consider a single realization of our numerical dis-denser clusters than in the larggease.
persion simulations, name|y, a dense cluster ok 10 par- The behavior reported is coherent with the value of our

ticles in the middle of the system. As the time evolves, theeffective persistence parametéB/A. By looking at Table |
typical picture of hydrodynamical mixing, consisting of the we get that\/B/A=0.1652 for the large, case andyB/A
elongation and folding of the initial droplet, applies. As a =0.1196 for the smally case. Since the largg-case has a
result, an initially dense cluster is separated into several ondarger value of\/B/A we found a larger amount of ballistic
of similar density. This process is clearly seen in Fig. 3 forevents than in the smal} case. We can generalize this be-
the positions of the 100 particles and in Fig. 4 for the relativehavior by looking at the trajectories and relative trajectories
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FIG. 7. Time evolution for ther(t), m(t), and A(t) functions
and the two relative momentsand|. Results from the case with
u3=1, ly=4, andt,=12 in Fig. 1.
Richardson’s behavior for our flows comes to a large extent

from rare ballistically separated pairs than from the typical
FIG. 5. Absolute positions of the 3010 particles for the case separation of a pair within a cluster. This cluster nature of
with uj=1, Io=4, andt,=6 shown in Fig. 1. The snapshots cor- turbulent dispersion has been also seen for an experimental
respond to time$=20,40,60, and 120. flow in Ref.[26].

of the other cases in Table I. The cases with smalBfA B. Distribution of interparticle distances

have fewer ballistic separations between particles and a To support this scenario we have computed the distribu-
larger number of diffusive and chaotic events than in thetion of interparticle distance3(R,t) at 10 different times for
cases with largex/B/A. the case withu3=1, |;=4, andt,=12 shown in Fig. 1. We

In general, all the values ofB/A for our flow (at least for concentrated on the behavior of the median and the lowest
the parameters shown in this workre much smaller than 1 moments of this distribution. Thus we calculate the square
and therefore the dispersion mechanism is mostly diffusivé©0t of the second moment(t) = \(R’(t)), the first moment
dominated. We have seen how most of the initially close™(t)=(R(t)), and the mediar\(t) defined as the distance
pairs stay close to each other considerable times, performing'Ch that half of the pairs have a separation smaller Ahat

similar motions even whe(R?)~t® applies. In other words, . 1€ time evolution ofr, m, andA is shown in Fig. 7. In
(R PP this figure we also plot the relative momerzts m(t)/ o (t)

andl=A(t)/o(t). Both, the relative first momerzand the
relative medianl decay at the beginning, then they remain
rather constant during the Richardson regires (20
—50)] and finally they grow when the diffusive regime is
reached. The behavior of both variables during the Richard-
son’s range stems from the fact that most of the particles
’ . remain clusterized in the same number of clusters, or equiva-
lently, that the distance between pairs is dominated by the
separation between clusters already existing rather than by
the formation of new ones. This supports the idea introduced
in Sec. lll and showed qualitatively in Sec. IV A. We can
compare this behavior with the properties of the two-
dimensional Gaussian distribution and the Richardson’s
stretched-Gaussian law. Since both distributions scale with
time, the values of and z for them stay constant and are
equal toz=0.886 and =0.832, andz=0.751 and =0.565
- o el ﬁ for the Gaussian and Richardson case, respectjiglyNote

:-“\*5 ‘&ﬁw in Fig. 7 that the value of in our case is even considerably
o lower than in the Richardson’s case, which shows the very
strong clusterization.

C. Relative velocity correlation functions

Another measure of the proportion of ballistically sepa-
FIG. 6. Relative distances corresponding to the snapshots showiated pairs can also be estimated by calculating the direction
in Fig. 5. correlation functions of the relative velocities,
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FIG. 8. Velocity correlation functionV (r,t) for the case With.l(2)=l, lo=4, andty=6 in Fig. 1. Left panel: normal representation at
timest=20,40,60. . .,200(from bottom to top. Right panel: scaled representation; notice how at times longer thaso8@ lineg the
functions scale quite well. We take the width of those scaled curves as the time memory of the flow.

W (t,7)=(e;(t)e;(t+7)). (22 havior. By defining our effective persistence parameter
VB/A, we have quantified the proportion of either diffusive
The brackets mean an average over pairs and statistical realr ballistic events that coexist under the sarhéaw.

izations of the flow, andyt) is the unit vector of the direc- We have found that the larger atg and u3, and the
tion of relative velocity of a pairi(j) at timet, smaller isl,, the larger isyB/A, and therefore the larger

number of pairs separate ballistically. We have also sup-

ported this idea by looking at the trajectories, the distribution

of interparticle distances, and the relative velocity correlation

functions. Moreover, the cluster nature of the dispersion un-
The functionW(t,7) is presented in Fig. 8 Witlmgzl, der our turbulent flows is pointed out.

=4, andt,=6 at timest=20,40,60. . . ,200(from bottom

to top) for the parameters of Fig. 5. For negative values of ACKNOWLEDGMENTS
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t=80) the function does not scale at all, contrary to the 1or ) 2 '
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If we compare the width of the scaled correlation func- 06 r h
tions for different cases we can see how the systems with & i
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larger time memory. In Fig. 9 we plot the scaled correlation
function for the cases in Fig. 1 for the tinbe 120, since all 02 .
the cases scale at that time. -
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We have presented in this contribution a numerical study "
T

of the diffusion of passive scalars in synthetic turbulent
flows. Making use of a practical algorithm to generate such F|G. 9. Scaled velocity correlation functiods(r,t) for the four
flows, we have simulated the two-particles and cluster discases in Fig. 1. We compare the scaled functions at tim&20
persion by a turbulent flow. since all the cases already show the scaling at that time. Notice how

We have focused on the two different dispersion mechathe time memory of each flow are consistent with their values of
nisms (diffusive and ballisti¢ that lead to Richardson’s be- B/A.



PRE 62 PARTICLES DISPERSION IN SYNTHETIC TURBULENT FLOWS 5005

knowledge computing support from Funda@atalana per a We know thatl'(7/3)= 31" (4/3)=3I'(1/3) and therefore
la Recerca. I.M.S. acknowledges financial support received
through the Fonds der Chemischen Industrie und through

DFG. I.M.S. also acknowledges valuable discussions with J. € |9 (r\?BT(-13) s
Klafter and financial support received through GGerman- C(r.o= alg "\ \ 5/ +o(ro/A%)|.

: _ _ 4\ 25Rr (413)
Israeli Foundation A.C.M. also acknowledges partial sup- (Ad)

port from the CONICYT(Fondo Clemente Estable, 3046
and PEDECIBA(Uruguay).

This expression can be reduced considering tblét
APPENDIX =9¢y/32m\ 4,

Starting from the definition of the mean-square relative
velocity in Eq.(14) in terms of velocity correlation functions

r
we have C(r,0= ug

( 23 AT (- 1/3)
14— —————
N 92281 (413)

(v2(r))=4ui—C(r,0). (A1) (A5)

+0(r?/\?)

If we rewrite Eq.(10) for the velocity correlation function in _ _ o _
terms of the generalized hypergeometric sefig&;b,c;d) Including this expression into E¢A1) we obtain
[27] we obtain

€ | T'(1/3) oy 5 , 16I'(—1/3) ( r ) 213
_ . Ny=uf——\ | . A6
r\23 T (-1/3
| o Fa(7/3;413,413r%140\) |. i i i i
()\) 2580 (4/3) 2( ) Finally, by replacing\ by its dependence with, we get
(A2)
- A lor than 1 W) ug 161'(—1/3) T#3(1/2T2%5/6)
orr much smaller than 1, v(lr))=—3
' 1283 9228 (413)  22RT23(113)
e | T(13 (r)”3 r'(—-1/3 )
C(r,0)= +{=| ————+0(r?\?]. u
O a2 @d X s O™ ~2.63%r2’3. (A7)
(A3) 0
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