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Abstract

We study synchronization of a one-dimensional array of coupled logistic maps in the regime
where the individual maps, without coupling, evolve in a periodic orbit. We investigate the e3ect
of a delay in the coupling that takes into account the 5nite velocity of propagation of interactions.
Two qualitatively di3erent synchronization regimes are found, depending on the value of the
coupling strength. For weak coupling the array divides into clusters, and the behavior of the
individual elements within each cluster depends on the delay times. For strong enough coupling,
the array synchronizes into a single cluster. The evolution of the elements is periodic and their
relative phases depend on the delay times.
c© 2003 Published by Elsevier Science B.V.
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Ensembles of coupled dynamical elements provide the basis of a wide class of math-
ematical models for natural complex phenomena, ranging from nonequilibrium macro-
scopic physical processes to biological evolution and ecology dynamics [1,2]. Over the
last two decades, in particular, globally coupled systems have attracted particular atten-
tion. In globally coupled systems, the interaction—which is usually introduced as an
attractive mutual action—does not depend on the distance between dynamical elements,

∗ Corresponding author. Tel.: +598-2-5258618/307; fax: +598-2-5250580.
E-mail addresses: cris@5sica.edu.uy (C. Masoller), marti@5sica.edu.uy (A.C. Mart*+),

zanette@cab.cnea.gov.ar (D.H. Zanette).

0378-4371/03/$ - see front matter c© 2003 Published by Elsevier Science B.V.
doi:10.1016/S0378-4371(03)00197-3

mailto:cris@fisica.edu.uy
mailto:marti@fisica.edu.uy
mailto:zanette@cab.cnea.gov.ar


C. Masoller et al. / Physica A 325 (2003) 186–191 187

and is typically de5ned through a set of quantities that correspond to global averages
over the ensemble. These models describe systems where the interaction ranges are
of the order of the system size, as it happens to be in many instances of biological
origin. The prototypical manifestation of collective behavior in globally coupled sys-
tems is synchronization, where the dynamical elements converge to a single trajectory
in phase space [3–5]. This behavior qualitatively reproduces synchronization phenom-
ena in real systems such as in neural networks and biological populations. In globally
coupled ensembles, synchronization occurs above a certain interaction strength. The
synchronization regime is usually preceded by a range where the ensemble is partially
synchronized, forming clusters of mutually synchronized elements [5–7].
In many physical and biological processes, time delays play an essential dynamical

role. For instance, in spite of the fact that in biological populations interaction lengths
may be comparable to the system size, interaction carriers—such as sound or odor—
can be relatively slow, directly a3ecting the collective behavior of the population. It
is, therefore, relevant to study globally coupled systems with time delays, as already
done in some previous work [8–10]. In the present paper, we study a model where
time delays in a globally coupled ensemble are directly associated with the spatial
distribution of the ensemble [11]. We consider a one-dimensional array of N maps,
coupled as

xi(t + 1) = (1− �)f[xi(t)] + �
N

N∑

j=1

f[xj(t − 	ij)] ; (1)

where f(x) = ax(1 − x) is the logistic map, � is the strength of the coupling, and 	ij
is a time delay, proportional to the distance between the ith and jth maps. Assuming
that the boundaries in the array are free, we take 	ij = k|i − j|. Here k is the inverse
of the velocity of the interaction signal traveling along the array.
In this preliminary report, we limit ourselves to the case where the parameter a is

such that the individual logistic maps, without coupling, evolve in a limit cycle of
period P = 2, i.e., 3¡a¡ 1 +

√
6. In such case, there are two exact solutions of

Eq. (1) which exist for all values of �. These solutions are characterized by the fact
that, for all pairs i, j, the signal received by map i at each time corresponds to a
delayed state of map j that coincides with the present state of map i:

xj(t − 	ij) = xi(t) : (2)

Thus, each map “perceives” the ensemble as being fully synchronized. In both solu-
tions, moreover, each map evolves along the limit cycle of period 2 of the uncoupled
dynamics.
The 5rst of the two solutions corresponds to an actually synchronized state, x1(t) =

x2(t) = · · · = xN (t) for all t. This in-phase solution exists for k even, where 	ij is
even for all i, j and, thus, delays are irrelevant to the dynamics. For k odd, on the
other hand, we 5nd an anti-phase exact solution, where the ensemble divides into two
clusters. The 5rst cluster includes the elements at even positions in the array, which
are mutually synchronized. The second cluster contains the maps at the odd sites. They
are also synchronized, but evolve along the limit cycle in counter-phase with respect
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to the element of the 5rst cluster. The successive states of the two clusters can be
illustrated as follows:

5rst cluster (even positions) :xAxBxAxB · · · ;
second cluster (odd positions) :xBxAxBxA · · · :

Here, xA and xB are the states of the limit cycle of period 2. We refer to these two
solutions—which, as shown below, are frequently found in numerical realizations of
our system—as the synchronized states of the ensemble.
To investigate the stability of the synchronized solutions, we have performed

numerical realizations starting from slightly perturbed in-phase and anti-phase states.
The integration of the delay equations (1) requires to specify the evolution of xi(t)
along the interval max(	ij)6 t6 0. We have de5ned this initial evolution by letting
the array evolve without coupling from given intial conditions. Our realizations were
performed for an array of N=100 maps with a=3:2, for several values of k and �. We
have found that, independently of the value of the coupling constant �, the in-phase and
anti-phase solutions are asymptotically approached for k even and odd, respectively.
Thus, both synchronized solutions are stable for the respective values of k.
On the other hand, random initial conditions—where the initial state of each element

is chosen at random in (0; 1)—are typically not attracted by the synchronized in-phase
or anti-phase solutions when coupling is weak (�¡ 0:1). The typical asymptotic solu-
tions for these initial conditions are the clustered states described in the following. For
small � and given k, thus, a synchronized solution coexist with the clustered states and
the system is multistable. As � grows, however, the basin of attraction of the synchro-
nized solution increases in size and the fraction of initial conditions that converge to
a clustered state decreases accordingly.
In the clustered states, for any k and �, each map is found to perform a cycle of

period 2. The detailed dynamical nature of the clustered states depends however on
whether k is even or odd. For k even, the elements of the array divide into two clusters
of sizes N1 and N2 (N1 +N2 =N , typically with N1 ≈ N2 ≈ N=2). While the elements
of one cluster visit the points x′A and x′B the elements of the other cluster visit the
points x′′A and x′′B . Moreover, while the elements of the 5rst cluster are in state x′B, the
elements of the other cluster are in x′′A , and vice versa. Taking into account that
the dynamics of the individual maps is periodic of period 2, and that 	ij is even
for all i and j, the values x′A, x

′
B, x

′′
A , and x

′′
B for a given partition (N1; N2) can be

calculated from the equations

x′A = (1− �)f(x′B) +
�
N

[N1f(x′B) + N2f(x′′A)] ;

x′B = (1− �)f(x′A) +
�
N

[N1f(x′A) + N2f(x′′B)] ;

x′′A = (1− �)f(x′′B) +
�
N

[N1f(x′A) + N2f(x′′B)] ;

x′′B = (1− �)f(x′′A) +
�
N

[N1f(x′B) + N2f(x′′A)] : (3)
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Fig. 1. Clustering behavior for weak coupling. We show two successive states of a linear array for ((a),
(b)) k = 2, ((c), (d)) k = 1. The other parameters are N = 100, a = 3:2, and � = 0:09.

Since the spatial position of the elements of each cluster is arbitrary, each partition is
associated, for large N , with a multitude of clustered states. Figs. 1(a) and (b) show
two consecutive snapshots of a clustered state for the 5rst 25 elements in the array,
with k = 2 and �= 0:09.
A somewhat more complicated behavior is found when k is odd. After a transient the

elements of the array divides into four clusters of sizes N1 · · ·N4 (N1 + · · ·+ N4 = N ,
typically with N1 ≈ · · ·N4 ≈ N=4). As before, within each cluster the individual
dynamics is periodic of period 2. Now, the positions of the elements of a given cluster
are all even or odd. It is observed that one of the clusters whose elements are at
even positions and one of the clusters whose elements are at odd positions visit states
x′A and x′B, in such a way that when the elements of the 5rst cluster are in x′A the
elements of the other cluster are in x′B, and vice versa. The remaining two clusters
behave analogously between states x′′A and x′′B . To clarify this rather obscure picture,
we give an explicit example of the successive states of the four clusters:

cluster of size N1 (odd positions) :x′Ax
′
Bx

′
Ax

′
B · · · ;

cluster of size N2 (even positions) :x′′Ax
′′
Bx

′′
Ax

′′
B · · · ;
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Fig. 2. Dependence of x′A, x
′
B (circles), x′′A , x

′′
B (stars) with the coupling strength. We chose the same random

initial condition for all �. Above a certain threshold, � ≈ 0:09, the data stand for the states of the in-phase
solution. The parameters are N = 100, a = 3:2, and k = 2.

cluster of size N3 (odd positions) :x′′Bx
′′
Ax

′′
Bx

′′
A · · · ;

cluster of size N4 (even positions) :x′Bx
′
Ax

′
Bx

′
A · · · :

The states x′A, x
′
B, x

′′
A , and x

′′
B for a given partition (N1; : : : ; N4) are given by the equations

x′A = (1− �)f(x′B) +
�
N

[M1f(x′B) +M2f(x′′A)] ;

x′B = (1− �)f(x′A) +
�
N

[M1f(x′A) +M2f(x′′B)] ;

x′′A = (1− �)f(x′′B) +
�
N

[M1f(x′A) +M2f(x′′B)] ;

x′′B = (1− �)f(x′′A) +
�
N

[M1f(x′B) +M2f(x′′A)] (4)

with M1 =N1 +N4 and M2 =N2 +N3. Note that these equations are formally the same
as Eqs. (3). The solutions will therefore be numerically identical. Again, clustered
states for k odd conform a multitude of possible asymptotic solutions of our system.
Figs. 1(c) and (d) display two consecutive states of the array for k = 1 and �= 0:09.
Taking a "xed random initial condition—which in turn 5xes the partition in

clusters—the values x′A, x
′
B, x

′′
A and x′′B vary with � as illustrated in Fig. 2, where

we plot for k = 2 the values of xi(t) and xi(t + 1) (with t large enough) for two
elements from di3erent clusters. Above a certain coupling intensity, � ≈ 0:09, the array
synchronizes in-phase. This critical value is found to depend on the initial condition,
as expected from the multistable nature of the system for small �.
To summarize, we have studied the e3ect of delayed interactions in a linear chain

of globally coupled logistic maps. We considered the case in which the maps, without
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coupling, evolve in a limit cycle of period P = 2n. We found global synchronization
as well as clustering behavior, and in both cases the relative evolution of the maps in
the array depend on the delay times. When the delay times 	ij are all even (i.e., when
	ij=k|i−j| and k is even) in the globally synchronized state the present state of all the
maps coincide. When k is odd (and therefore, the delay times are either even or odd,
depending on |i − j|), in the globally synchronized state there is a constant di3erence
between the states of the maps. In both cases, the state of map j at time t−	ij coincides
with the present state of map i (for all i, j and t). The study of synchronized states for
arbitrary values of P and in the chaotic regime of logistic maps is the aim of future
work.
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