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Abstract. We review our recent work on the synchronization of a network of delay-
coupled maps, focusing on the interplay of the network topology and the delay times that
take into account the finite velocity of propagation of interactions. We assume that the
elements of the network are identical (N logistic maps in the regime where the individ-
ual maps, without coupling, evolve in a chaotic orbit) and that the coupling strengths
are uniform throughout the network. We show that if the delay times are sufficiently
heterogeneous, for adequate coupling strength the network synchronizes in a spatially ho-
mogeneous steady state, which is unstable for the individual maps without coupling. This
synchronization behavior is referred to as ‘suppression of chaos by random delays’ and is in
contrast with the synchronization when all the interaction delay times are homogeneous,
because with homogeneous delays the network synchronizes in a state where the elements
display in-phase time-periodic or chaotic oscillations. We analyze the influence of the net-
work topology considering four different types of networks: two regular (a ring-type and
a ring-type with a central node) and two random (free-scale Barabasi–Albert and small-
world Newman–Watts). We find that when the delay times are sufficiently heterogeneous
the synchronization behavior is largely independent of the network topology but depends
on the network’s connectivity, i.e., on the average number of neighbors per node.
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1. Introduction

A system composed of many nonlinear interacting units often forms a complex
system with new emergent properties that are not held by the individual units. Such
systems describe a wide variety of phenomena in biology, physics, and chemistry.
The emergent property is usually synchronous oscillations. Examples include the
synchronized activity in pacemaker heart cells, the cicardian rhythms, the flashing
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on-and-off in unison of populations of fireflies, synchronized oscillations in laser
arrays, in Josephson junction arrays etc. [1–5].

The effect of time-delayed interactions, which arise from a realistic considera-
tion of finite communication times, is a key issue that has received considerable
attention. The first systematic investigation of time-delayed coupling was done
by Schuster and Wagner [6], who studied two coupled phase oscillators and found
multistability of synchronized solutions. Since then, delayed interactions have been
studied in the context of linear systems [7], phase oscillators [8], limit-cycle oscilla-
tors [9], coupled maps [10,11], lasers [12,13], neurons [14–16], etc.

It is well-known that oscillators that interact with different delay times can syn-
chronize [17–23], but the interplay of the interaction delays and the network topol-
ogy is still poorly understood. Here we review the main results of our recent work
on the synchronization of chaotic logistic maps [24–26] focusing on the interplay
of delays and topology. We show that a network of delay-coupled logistic maps
can synchronize, for adequate coupling strength, in spite of the fact that the inter-
actions among the maps have a heterogeneous distribution of delay times. In the
synchronized state the chaotic dynamics of the individual maps is suppressed and
all elements of the network are in a steady state, which is an unstable fixed-point
of the uncoupled maps. This is in sharp contrast with the synchronized dynamics
when the delays are homogeneous (instantaneous coupling and fixed-delay cou-
pling), because with uniform delays the maps evolve in either periodic or chaotic
orbits.

We investigate the influence of the network topology considering four different
types of networks: two regular (a ring-type and a ring-type with a central node)
and two random (free-scale Barabasi–Albert [27] and small-world Newman–Watts
[28]). We find that steady-state synchronization depends mainly on the average
number of neighbors per node but is largely independent of the network architecture
(i.e., the way the links are distributed among the nodes). This is also in contrast
with the homogeneous delay case, because when the delay times are uniform the
synchronization of the network depends strongly on the connection topology [11].

The rest of the paper is structured as follows. In §2 we introduce the basic
ingredients of our model. Subsequently, §3 presents the results of the simulations.
Finally, §4 summarizes the main findings and presents the conclusions from this
investigation.

2. Networks and interaction models

We consider a network of N coupled maps:

xi(t + 1) = (1− ε)f [xi(t)] +
ε

bi

N∑

j=1

ηijf [xj(t− τij)], (1)

where t is a discrete time index, i is a discrete spatial index (i = 1 . . . N), f(x) =
ax(1 − x) is the logistic map, the matrix η = (ηij) defines the connectivity of the
network: ηij = ηji = 1 if there is a link between the ith and jth nodes, and zero
otherwise. ε is the coupling strength, which is uniform throughout the network, and
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τij is the delay time in the interaction between the ith and jth nodes (the delay
times τij and τji need not be equal). The sum in eq. (1) runs over the bi nodes
which are coupled to the ith node (bi =

∑
j ηij). The normalized pre-factor 1/bi

means that each map receives the same total input from its neighbors.
It can be noticed that the homogeneous steady-state

xi(t) = xj(t) = x0, ∀i, j, t, (2)

where x0 is a fixed point of the uncoupled map, x0 = f(x0), is a solution of eq. (1)
regardless of the delay times and of the connectivity of the network.

We will consider delay times that are either homogeneous (τij = τ0 for all i, j)
or heterogeneous. In the latter case we introduce a disorder parameter, c, that
quantifies the strength of heterogeneity and allows varying the delays from a delta
distribution (uniform delays) to Gaussian or exponential distributions. Specifically
we consider

(i) τij = τ0 + cξ, where ξ is Gaussian distributed with zero mean and standard
deviation one. The delays are homogeneous (τij = τ0) for c = 0 and are Gaussian
distributed around τ0 for c 6= 0 (depending on τ0 and c the distribution of delays
has to be truncated to avoid negative delays (see figure 1f)).

(ii) τij = τ0 + cξ, where ξ is exponentially distributed, positive, with unit mean.
The delays are homogeneous (τij = τ0) for c = 0 and are exponentially distributed,
decaying from τ0 for c 6= 0.

To investigate the influence of the topology we consider four networks, two of
them are regular and the other two are random. The regular ones are a ring
of nearest-neighbor elements (NN) while in the second one we added a central
node connected to all other nodes (ST). The random networks consist of a scale
free network (SF) constructed according to the Barabasi–Albert method [27] and,
concerning the last one, we use the small-world (SW) topology proposed by Newman
and Watts [28].

In the next section we present results of simulations that show that the homoge-
neous steady state, eq. (2), with x0 being the nontrivial fixed point of the logistic
map, x0 = 1 − 1/a, is a stable solution for adequate coupling strength and delay
times.

3. Results

The simulations were done choosing a random initial configuration, xi(0) randomly
distributed in [0,1], and letting the network evolve initially without coupling (in
the time interval 0 < t < max(τij)). After that, in order to avoid transient effects,
we neglect the first iterations (typically 4000 time steps). We present results for
a = 4, corresponding to fully developed chaos of the individual maps, but similar
results have been found for other values of the parameter a. Although the present
work has been performed considering identical maps, based on our previous work of
nonidentical maps coupled with distant-dependent delays [22] we expect the results
presented here to be robust to the inclusion of small mismatches in the nonlinear
parameter a. The degree of robustness to parameter mismatch is a study that is
left for future work.
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Figure 1. xi vs. ε (a) and (b); σ2 vs. ε (c) and (d). In (a) and (c) the delays
are distributed exponentially (τ0 = 0, c = 1.2, see text); the distribution is
shown in (e). In (b) and (d) the delays are Gaussian distributed (τ0 = 3,
c = 2, see text); the distribution is shown in (f). The inset in (c) shows in
detail the transition to synchronization: σ2 decreases abruptly at ε ∼ 0.4, and
is zero for ε > 0.8. N = 500, a = 4, and p = 0.3.

With both heterogeneous and homogeneous delay times, if the coupling strength
is large enough the network synchronizes in a spatially homogeneous state: xi = xj

∀i, j. Figures 1 and 2 display the transition to synchronization as ε increases. In
these figures the network has a small-world topology [28], but similar results have
been found for other topologies, as discussed below. At each value of ε, 100 iterates
of an element of the network are plotted after transients. To do these bifurcation
diagrams only the coupling strength, ε, was varied; the network connectivity, ηij ,
the delay times, τij , and the initial conditions, xi(0), are the same for all values of
ε.

Figure 1a displays results for exponentially distributed delays and figure 1b for
Gaussian distributed delays; figure 2a for instantaneous interactions, and figure
2b for uniform delays. It can be noticed that for small ε the four bifurcation
diagrams are very similar (we refer to this region as the ‘weak coupling region’);
however, as ε increases above ∼ 0.1 the bifurcation diagrams begin showing some
differences, and for large ε they differ drastically: xi is constant in figures 1a and
1b, xi = x0 = 1− 1/a, while xi varies within [0,1] in figures 2a and 2b.

To characterize the transition to synchronization we use the indicator

σ2 = 1/N〈
∑

i

[xi(t)− 〈x〉]2〉t, (3)

where 〈·〉 denotes an average over the elements of the network and 〈·〉t denotes an
average over time. Figures 1c, 1d, 2c and 2d display σ2 vs. ε corresponding to the
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Figure 2. xi vs. ε (a) and (b); σ2 vs. ε (c) and (d). In (a), (c) τij = 0 ∀i,j;
in (b), (d) τij = 3 ∀i,j. All other parameters are as in figure 1.

bifurcation diagrams discussed above. It can be noticed that for large ε there is
in-phase synchronization in the four cases (σ2 = 0 if and only if xi(t) = xj(t) ∀i,j);
however, we remark that an inspection of the time-dependent dynamics reveals that
the synchronized dynamics is different: for heterogeneous delays the maps are in a
steady state, while for homogeneous delays the maps evolve either periodically or
chaotically. It can also be observed that the four plots of σ2 vs. ε are similar in
the weak coupling regime (in figure 2d the network synchronizes also in a window
of small ε; this occurs for odd delays as reported in [11]).

Next we analyze the influence of the network topology. Figure 3 displays a
density plot of σ2 as a function of the coupling strength, ε, and the mean number
of neighbors per node, 〈b〉 =

∑
bi/N . The four panels correspond to the different

networks mentioned above (SW, SF, ST and NN); in these cases the Gaussian
distribution of delays is the same in the four panels. Despite the differences when
the number of neighbors is small, it can be observed that the synchronizability of
the network is largely independent of the topology.

We also show in figure 4, for the sake of comparison, two topologies (SW, NN)
with a Gaussian delay distribution. Analyzing figure 4 it is possible to conjecture
that it represents an intermediate behavior between the random delay Gaussian
distribution and the fixed delay interaction. Regarding the case of odd delays, it
looks like a trace of the ‘island of synchronization’ is present in the fixed delay
interactions, but is not present in the Gaussian random delay distribution.

Concerning the influence of the delay distribution, in figures 5–7 we show the
synchronization regions for the cases of instantaneous interactions and homoge-
neous delays respectively. It has been reported [11] that there is a very important
difference between the case with an even or odd homogeneous delay (figures 6 and
7). With an even delay it can be proved that there is a kind of ‘island of syn-
chronization’, and it is a region for ε (roughly speaking from ε ∼ 0.15 to 0.19 –
weak coupling regime) where the maps synchronize. In addition to this, we see a
subcritical period doubling bifurcation in this region. For an odd delay, this syn-
chronization region disappears. Although this kind of delay, in the case of even
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Figure 3. Random delays: synchronization regions for the four different net-
works considered and Gaussian distributed delays. The density plots represent
the parameter σ2 as a function of ε and b averaged over 10 realizations of the
initial conditions (N = 100 and a = 4).

Figure 4. Random delays: synchronization regions for the SW and NN
networks and exponential distributed delays. The parameters are the same as
in figure 3.

delays, secure these ‘islands of synchronization’ there are some particularities to
take into account. For example, in the case of the NN topology, for small number
of neighbors the synchronization is not as good as in the rest of the topologies.
Also in the upper limit of the weak coupling regime (ε & 0.4) there are differences
between the irregular networks (SW, SF) and the regular ones (NN, ST).

Considering all the delay distributions showed (figures 3–7) it is possible to
conclude that the random delay distribution homogenizes the synchronization
propensity in relation to the network topologies, and it also sets the value of the
coupling constant ε for the onset of synchronization in a greater ε compared with
the other delay distributions.
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Figure 5. Instantaneous interactions: synchronization regions for the four
different networks considered. The parameters are the same as in figure 3.

Figure 6. Homogeneous delays (τ0 = 5): synchronization regions for the
four different networks considered. The parameters are the same as in
figure 3.

In further researches we plan to extend this investigation about the special weak-
coupling regime and the properties of synchronization related to the network topol-
ogy and connectivity. There we have analyzed the properties briefly discussed here,
considering five different kinds of topologies [30].
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Figure 7. Homogeneous delays (τ0 = 4): synchronization regions for the SW
(left) and NN (right) networks. The parameters are the same as in figure 3.

4. Discussion and conclusions

To summarize, we studied the dynamics of a network of chaotic maps with delayed
interactions and showed that the network synchronizes in a spatially homogeneous
steady state if the delay times are sufficiently heterogeneous. This behavior resem-
bles the so-called ‘amplitude (or oscillator) death’ phenomenon, which refers to the
fact that under certain conditions the amplitude of delay-coupled oscillators shrinks
to zero [9]. It has been shown that the distributed delays are more stabilizing than
fixed delays [20]. The stabilization of the fixed-point is also related to the multiple
delay feedback method proposed by Ahlborn and Parlitz [29], for stabilizing unsta-
ble steady states. We have recently compared the dynamics of a map of a network
of N delayed-coupled maps with the dynamics of a map with N self-feedback de-
layed loops [25]. If N is sufficiently large, we found that the dynamics of a map
of the network is similar to the dynamics of a map with self-feedback loops with
the same delay times. Several delayed loops stabilize the fixed point; however, the
distribution of delays played a key role: if the delays are all odd a periodic orbit
(and not the fixed point) was stabilized.
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